Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-2\right)\)
= m2 + 2m + 1 - 2m + 2 = m2 + 3 > 0 (vì m2 ≥ 0)
⇒ Phương trình có 2 nghiệm phân biệt x1, x2
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-2\end{matrix}\right.\)
Ta có: x12 + x22 + 3x1x2 = 25
⇔ (x1 + x2)2 - 2x1x2 + 3x1x2 = 25
⇔ (x1 + x2)2 + x1x2 = 25
⇔ [2(m + 1)]2 + (2m - 2) = 25
⇔ 4m2 + 8m + 4 + 2m - 2 - 25 = 0
⇔ 4m2 + 10m - 23 = 0
⇔ \(\left[{}\begin{matrix}m=\dfrac{-5+3\sqrt{13}}{4}\\m=\dfrac{-5-3\sqrt{13}}{4}\end{matrix}\right.\)
Vậy m = ...
Lời giải:
a) Khi $m=2$ thì pt trở thành:
$x^2-10x+15=0\Leftrightarrow (x-5)^2=10\Rightarrow x=5\pm \sqrt{10}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì trước tiên:
$\Delta'=(2m+1)^2-(4m^2-2m+3)>0$
$\Leftrightarrow 6m-2>0\Leftrightarrow m>\frac{1}{3}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(2m+1)\\ x_1x_2=4m^2-2m+3\end{matrix}\right.\)
Để $(x_1-1)^2+(x_2-1)^2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2(x_1+x_2)+2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16$
$\Leftrightarrow 4(2m+1)^2-4(4m^2-2m+3)=16$
$\Leftrightarrow (2m+1)^2-(4m^2-2m+3)=4$
$\Leftrightarrow 6m-2=4\Leftrightarrow m=1$ (thỏa mãn)
vậy...........
\(\text{Δ}=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)
\(=4m^2-8m^2+16=-4m^2+16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)<0
=>-2<m<2
Theo đề, ta có:
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2-1< 0\)
\(\Leftrightarrow\left(-m\right)^2-\dfrac{5}{2}\left(m^2-2\right)-1< 0\)
\(\Leftrightarrow m^2-\dfrac{5}{2}m^2+5-1< 0\)
\(\Leftrightarrow m^2\cdot\dfrac{-3}{2}< -4\)
\(\Leftrightarrow m^2>6\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{6}\\m< -\sqrt{6}\end{matrix}\right.\)
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3
Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24
Phương trình có hai x 1 ; x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0
Áp dụng định lý Vi – ét ta có x 1 + x 2 = 2 ( m + 4 ) ; x 1 . x 2 = m 2 – 8
Ta có:
A = x 1 + x 2 − 3 x 1 x 2
= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 = − 3 m 2 − 2 3 m − 32 3
= − 3 m − 1 3 2 + 97 3
Nhận thấy A ≤ 97 3 và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3 (TM)
Vậy giá trị lớn nhất của A là 97 3 khi m = 1 3
Đáp án: A
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
\(=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m+3\right|\)
=>\(\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m+3\right|\)
=>\(2m^2+\left|m+3\right|=2^2-5\left(m-1\right)\)
=>\(2m^2+\left|m+3\right|=4-5m+5=-5m+9\)
=>\(2m^2+\left|m+3\right|+5m-9=0\)(1)
TH1: -3<=m<2
(1) sẽ trở thành \(2m^2+m+3+5m-9=0\)
=>\(2m^2+6m-6=0\)
=>\(m^2+3m-3=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{21}}{2}\left(nhận\right)\\m=\dfrac{-3-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)
TH2: m<-3
(1) sẽ trở thành \(2m^2-m-3+5m-9=0\)
=>\(2m^2+4m-12=0\)
=>\(m^2+2m-6=0\)
=>\(\left(m+1\right)^2=7\)
=>\(\left[{}\begin{matrix}m=\sqrt{7}-1\left(loại\right)\\x=-\sqrt{7}-1\left(nhận\right)\end{matrix}\right.\)