Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\dfrac{3}{2}\right)\times\left(2x+1\right)>0\)
Th1:
\(x-\dfrac{3}{2}>0\Leftrightarrow x>\dfrac{3}{2}\)
\(2x+1>0\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
( 1 )
Th2:
\(x-\dfrac{3}{2}< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< -\dfrac{1}{2}\)
( 2 )
Từ ( 1 ) và ( 2 ), ta có:
\(\Rightarrow x< -\dfrac{1}{2};x>\dfrac{3}{2}\)
\(\left(2-x\right)\times\left(\dfrac{4}{5}-x\right)< 0\)
Th1:
\(2-x>0\Leftrightarrow x>2\)
\(\dfrac{4}{5}-x< 0\Leftrightarrow x< \dfrac{4}{5}\)
( Loại )
Th2:
\(2-x< 0\Leftrightarrow x< 2\)
\(\dfrac{4}{5}-x>0\Leftrightarrow x>\dfrac{4}{5}\)
=> \(\dfrac{4}{5}< x< 2\)
a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)
+ \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)
+ \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)
Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)
b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)
+ \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )
+ \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)
Vậy \(-2< x< -\frac{2}{3}\)
a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)
\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)
\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)
\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)
\(x=\dfrac{-1}{3}\)
b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)
\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)
\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)
\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)
\(2x=\dfrac{-17}{24}\)
\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)
\(x=\dfrac{-17}{48}\)
c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, 1/4 + 3/4 : x = -2
3/4 : x = -2 - 1/4
3/4 : x = -9/4
x = 3/4 : -9/4
x = -1/3
\(\Rightarrow\left[{}\begin{matrix}2^{x+1}=8=2^3\\\dfrac{x}{3}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x+1=3\\x=\dfrac{3\cdot3}{4}=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2^{x+1}=8\\\dfrac{x}{3}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{9}{4}\end{matrix}\right.\)
Vì ( x + 1 ) ( x - 3 ) < 0
=> x + 1 và x - 3 trái dấu
Mà x + 1 > x - 3 ∀ x ∈ Q
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}}\)
Vậy -1 < x < 3
(x+1)(x-3)<0
th1
\(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(voly\right)}\)
th2\(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow}-1< x< 3}\)