Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:x+3 chia hết cho x
Mà x chia hết cho x
=>3 chia hết cho x
=>x\(\in\) Ư(3)={-3,-1,1,3}
Ta có:3x+5 chia hết cho x+1
=>3x+3+2 chia hết cho x+1
=>3(x+1)+2 chia hết cho x+1
Mà 3(x+1) chia hết cho x+1
=>2 chia hết cho x+1
=>x+1\(\in\)Ư(2)={-2,-1,1,2}
=>x\(\in\){-3,-2,0,1}
Câu 1 (2 điểm)
a) Tính nhanh: 16 + (27 - 7.6) - (94.7 - 27. 99)
b) Tính tổng:
Câu 2 (2 điểm) Cho biểu thức: M = 5 + 52 + 53 + ... + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
Câu 3 (2 điểm)
a) Chứng tỏ rằng: (n ∈ N) là phân số tối giản.
b) Tìm các giá trị nguyên của n để phân số B = có giá trị là số nguyên.
Câu 4 (1 điểm) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3 dư 1; chia cho 4 dư 2; chia cho 5 dư 3; chia cho 6 dư 4 và chia hết cho 11.
Câu 5 (2 điểm) Trên cùng nửa mặt phẳng bờ chứa tia Ox vẽ 3 tia Oy, Oz, Ot sao cho ∠xOy = 30o; ∠xOz = 70o; ∠xOt = 110o
a) Tính ∠yOz và ∠zOt
b) Trong 3 tia Oy, Oz, Ot tia nào nằm giữa 2 tia còn lại? Vì sao?
c) Chứng minh: Oz là tia phân giác của góc yOt.
Câu 6 (1 điểm) Chứng minh rằng:
Đáp án đề thi học sinh giỏi môn Toán lớp 6
Câu 1: (Mỗi câu đúng, cho 1 điểm)
a) 16 + (27 - 7.6) - (94.7 - 27. 99)
= 16 + 27 - 7.6 - 94.7 + 27.99
= 16 + 27 + 27.99 - 7.6 - 94.7
= 16 + 27(99 + 1) - 7.(6 + 94)
= 16 +27.100 - 7. 100
= 16 + 100(27- 7) = 16 + 100.20 = 16 + 2000 = 2016
Câu 2:
a) Ta có: M = 5 + 52 + 53 + ... + 580
= 5 + 52 + 53 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) +... + (579 + 580)
= (5 + 52) + 52.(5 + 52) + 54(5 + 52) + ... + 578(5 + 52)
= 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 52 + 54 + ... + 578) ⋮ 30
b) Ta thấy : M = 5 + 52 + 53 + ... + 580 chia hết cho số nguyên tố 5.
Mặt khác, do: 52+ 53 + ... + 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
M chia hết cho 5 nhưng không chia hết cho 52
M không phải là số chính phương.
(Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p2).
Câu 3:
a). Chứng tỏ rằng: là phân số tối giản.
Gọi d là ước chung của n + 3 và 2n + 5 với d ∈ N
=> n + 3 ⋮ d và 2n + 5 ⋮ d
=> (n + 3) - (2n + 5) ⋮d => 2(n + 3) - (2n + 5) ⋮ d <=> 1 ⋮d => d = 1 ∈ N
=> ƯC( n + 3 và 2n + 5) = 1
=> ƯCLN (n + 3 và 2n + 5) = 1 => (n ∈ N) là phân số tối giản.
Câu 4:
Gọi số phải tìm là x.
Theo bài ra ta có x + 2 chia hết cho 3, 4, 5, 6.
=> x + 2 là bội chung của 3, 4, 5, 6
Mà BCNN(3; 4; 5; 6) = 60 nên x + 2 = 60.n .
Do đó x = 60.n – 2 ; (n = 1; 2; 3.....)
Mặt khác x11 nên lần lượt cho n = 1; 2; 3.... Ta thấy n = 7 thì x = 418 11
Vậy số nhỏ nhất phải tìm là 418.
Câu 5:
rui nha
k mknhe hih chúc bn thi tốt