K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`x^3 - 3x^2y + x + 3xy^2 - y - y^3`

`=(x)^3 - 3*(x)^2*y + 3*x*y^2 - (y)^3 + (x - y)`

`= (x - y)^3 + (x - y)`

`= (x - y)[(x - y)^2 + 1]`

`= (x - y)(x - y - 1)(x - y + 1)`

____

`@` CT:

`(A - B)^3=A^3-3A^2B+3AB^2- B^3`

18 tháng 4 2018

\(x^3-3x^2=0\)

\(\Leftrightarrow x^2\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

18 tháng 4 2018

khỉ nghĩ như này..

x3-3x2=0

(=)x2 (x-3)=0

(=)x2=0,hoac x-3=0

(=)x=3

24 tháng 6 2018

Giải:

a) \(x\left(x-2\right)-\left(x+3\right).x+7+9x=6\)

\(\Leftrightarrow x^2-2x-\left(x^2+3x\right)+7+9x=6\)

\(\Leftrightarrow x^2-2x-x^2-3x+7+9x=6\)

\(\Leftrightarrow4x=-1\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

Vậy ...

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-\left(10x+2-15x^2+6x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-10x-2+15x^2-6x=4\)

\(\Leftrightarrow30x-37=4\)

\(\Leftrightarrow30x=41\)

\(\Leftrightarrow x=\dfrac{41}{30}\)

Vậy ...

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14x\) (Sửa đề)

\(\Leftrightarrow x^3+8-x^3-3=14x\)

\(\Leftrightarrow5=14x\)

\(\Leftrightarrow x=\dfrac{5}{14}\)

Vậy ...

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

\(\Leftrightarrow x^3+1-x^3-3x=2\)

\(\Leftrightarrow1-3x=2\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

25 tháng 6 2018

a) \(x\left(x-2\right)-\left(x+3\right)x+7+9x=6\)

=> \(x^2-2x-x-3x+7+9x=6\)

=> \(x^2-2x-x^2-3x+7+9x=6\)

=> \(\left(x^2-x^2\right)+\left(-2x-3x+9x\right)=6-7\)

=> \(4x=-1\)

Vậy \(x=\dfrac{-1}{4}\)

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

=>\(21x-15x^2-35+25x-10x+15x^2-4+6x=4\)

=> \(\left(21x+25x-10x+6x\right)\)\(+\left(-15x^2+15x^2\right)\)\(=4+35+4\)

=> \(42x=43\)

Vậy \(x=\dfrac{43}{42}\)

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14\)

=> \(x^3-2x^2+4x+2x^2-4x+8-x^3-3\)\(=14x\)

=>\(\left(x^3-x^3\right)+\left(-2x^2+2x^x\right)+\left(4x-4x\right)+\left(8-3\right)\)\(=14x\)

=> \(5=14x\)

Vậy \(x=\dfrac{5}{14}\)

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

=> \(x^3+x^2+x+x^2-x+1-x^3-3x=2\)

=>\(\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x-3x\right)=2-1\)

=> \(-3x=1\)

Vậy \(x=\dfrac{-1}{3}\)

11 tháng 7 2023

Yêu cầu của đề là gì ?

11 tháng 7 2023

Tính

 

31 tháng 12 2023

\(x^3+3x^2y+3xy^2+y^3-x-y\\=(x^3+3x^2y+3xy^2+y^3)-(x+y)\\=(x+y)^3-(x+y)\\=(x+y)[(x+y)^2-1]\\=(x+y)(x^2+2xy+y^2-1)\)

a: =(a^2-b^2)-(2a-2b)

=(a-b)(a+b)-2(a-b)

=(a-b)(a+b-2)

b: =(3x-3y)+5y(x-y)

=3(x-y)+5y(x-y)

=(x-y)(5y+3)

c: \(=\left(x+y\right)^2\left(x-y\right)+x\left(y-x\right)\)

=(x-y)*(x+y)^2-x(x-y)

=(x-y)[(x+y)^2-x]

d: \(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

=(-x-4y+5)(3x+2y+3)

e: =16-(x^2-4xy+4y^2)

=16-(x-2y)^2

=(4-x+2y)(4+x-2y)

g: =9x^2-6x+1-(3xy-y)

=(3x-1)^2-y(3x-1)

=(3x-1)(3x-y-1)

h: =(x-y)^3-z^3

=(x-y-z)[(x-y)^2+z(x-y)+z^2]

=(x-y-z)(x^2-2xy+y^2+xz-yz+z^2)

29 tháng 8 2023

a) \(a^2-b^2-2a+2b\)

\(=\left(a^2-b^2\right)-\left(2a-2b\right)\)

\(=\left(a+b\right)\left(a-b\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2\right)\)

b) \(3x-3y-5x\left(y-x\right)\)

\(=\left(3x-3y\right)+5x\left(x-y\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

c) \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)

\(=\left(x+y\right)^2\left(x-y\right)+\left(xy-x^2\right)\)

\(=\left(x+y\right)^2\left(x-y\right)-x\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+2xy+y^2-x\right)\)

d) \(\left(x-y+4\right)^2-\left(2x+3y-1\right)\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)

29 tháng 6 2019

\(a,\)\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2.\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2=\left(x-y+x+y\right)^2=x^2\)

\(b,\)\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(54+8x\right)\)

\(=8x^2-27-54-8x=8x^2-8x-81\)

\(c,\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=27x^3+y^3-\left(27x^3-y^3\right)=2y^3\)

\(d,\)\(\left(a+b+c\right)^2-\left(a-c\right)^2-2ab+2bc\)

\(=a^2+b^2+c^2+2ab+2bc+2ac-a^2+2ac-c^2-2ab+2bc\)

\(=b^2+4bc+4ac\)

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

17 tháng 6 2016

1)Xài hằng đẳng thức.

2)Ta có:

 (x+y)(x+y)(x+y)=(x+y)(x^2+xy+xy+y^2)

=(x+y)(x^2+2xy+y^2)

=x^3+2x^2y+xy^2+yx^2+2xy^2+y^3

=x^3+3x^2y+3xy^2+y^3 

18 tháng 10 2021

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)