Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)
\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)
\(\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)
\(\Leftrightarrow\left(x-2018\right).\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}< 0\)
nên x - 2018 = 0
,<=> x = 2018
Vậy phương có 1 nghiệm là x = 2018
pt <=> (x-3/2015 - 1) + (x-2/2016 - 1) = (x-2016/2 - 1) + (x-2015/3 - 1)
<=> x-2018/2015 + x-2018/2016 = x-2018/2 + x-2018/3
<=> x-2018/2 + x-2018/3 - x-2018/2015 - x-2018/2016 = 0
<=> (x-2018).(1/2+1/3-1/2015-1/2016) = 0
<=> x-2018 = 0 ( vì 1/2+1/3-1/2015-1/2016 > 0 )
<=> x=2018
Tk mk nha
ta có ; x-3/2015 -1 +x-2/2016 -1 = x-2016/2 -1 +x-2015/3-1
x-2018/2015 + x-2018/2016 = x-2018/2 +x-2018/3
(x-2018)*(1/2015+1/2016-1/2-1/3)=0
vi (1/2015+1/2016-1/2-1/3) luon khac 0
suy ra : x-2018 = 0 suy ra x=2018
\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)
trừ 2 vế với 2, ta có:
\(\frac{x-3}{2015}+\frac{x-2}{2016}-2=\frac{x-2016}{2}+\frac{x-2015}{3}-2\)
\(\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)
\(\frac{x-2018}{2015}+\frac{x-2018}{2016}=\frac{x-2018}{2}+\frac{x-2018}{3}\)
\(\left(x-2018\right)\frac{1}{2015}+\left(x-2018\right)\frac{1}{2016}=\left(x-2018\right)\frac{1}{2}+\left(x-2018\right)\frac{1}{3}\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)=0\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Mà \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\ne0\)
\(\Rightarrow x-2018=0\Leftrightarrow x=2018\)
Vậy tập nghiệm của PT là\(S=\left\{2018\right\}\)
\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)
\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)
\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)
\(-\left(\frac{x+2017}{3}+1\right)=0\)
\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
<=> x=-2020
Vậy x=-2020
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Rightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=2016-2016\)
\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Rightarrow\left(x-2017\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\ne0\Rightarrow x-2017=0\)
=> x = 2017
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
\(\Leftrightarrow\frac{x-3}{2015}+\frac{x-2}{2016}-\frac{x-2016}{2}-\frac{x-2015}{3}=0\)
\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-2016}{2}-1\right)-\left(\frac{x-2015}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\Rightarrow x=2018\)