Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)
\(\Rightarrow x-2017=0\)
\(\Rightarrow x=2017\)
<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)
<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)
<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)
<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)
<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)
<=> \(x=2017\)
Vậy x = 2017
đúng thì
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
PT đã cho tương đương với:
\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)
\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)
Phải là \(\frac{x}{2012}\)
\(\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x=2012\)
Vậy ...
a, \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
= \(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
( x + 5)(x - 3) = \(x^2-1\) - 8
x\(^2\) -3x + 5x -15 = \(x^2-9\)
= > \(x^2-x^2\) +2x = 15 - 9
=> 2x = 6
=> x = 3
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10
\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)
\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)
\(\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)
\(\Leftrightarrow\left(x-2018\right).\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}< 0\)
nên x - 2018 = 0
,<=> x = 2018
Vậy phương có 1 nghiệm là x = 2018
pt <=> (x-3/2015 - 1) + (x-2/2016 - 1) = (x-2016/2 - 1) + (x-2015/3 - 1)
<=> x-2018/2015 + x-2018/2016 = x-2018/2 + x-2018/3
<=> x-2018/2 + x-2018/3 - x-2018/2015 - x-2018/2016 = 0
<=> (x-2018).(1/2+1/3-1/2015-1/2016) = 0
<=> x-2018 = 0 ( vì 1/2+1/3-1/2015-1/2016 > 0 )
<=> x=2018
Tk mk nha
\(\Leftrightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Leftrightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x=2012\)
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Rightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=2016-2016\)
\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Rightarrow\left(x-2017\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\ne0\Rightarrow x-2017=0\)
=> x = 2017