K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

x thuộc rông cậu nhé . 

11 tháng 5 2016

x= căn 2

24 tháng 2 2023

\(P\left(x\right)=2x^4+3x^2-x^3-3x^4-x^2-2x+1\)

\(=-x^4-x^3+2x^2-2x+1\)

24 tháng 2 2023

C

12 tháng 10 2018

nany???

12 tháng 10 2018

ai cho copy bài làm của tui

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

28 tháng 10 2023

a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)

=>\(\left(x-2\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)

mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)

nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

=>\(2^x\left(1+2+2^2+2^3\right)=120\)

=>\(2^x\cdot15=120\)

=>\(2^x=8\)

=>x=3

e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)

=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)

=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)

11 tháng 7 2018

1)

2x.(x-2) - x.(2x+1) = 3

=> 2x2 - 4x - 2x2 - x = 3

=> (2x2 - 2x2 ) - (4x+x) = 3

=> -5x = 3

=> x = \(\dfrac{-3}{5}\)

2) (2x-1).(x-2) - (x+3).(2x-7) = 3

=> 2x2 - 4x - x + 2 - 2x2 + 7x - 6x + 21 = 3

=> (2x2 - 2x2) - (4x + 6x + x - 7x) + 2 + 21 = 3

=> -4x = -20

=> x = -20 : (-4)

=> x = 5

3) (x - 5).(-x + 4) - (x - 1).(x + 3) = -2x2

=> Bạn tách tương tự như mấy câu 2 nhé! Nếu không làm được thì bảo mình

12 tháng 7 2018

mình ko bt làm toán số

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)

\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)

\(=2x^2+x+1\)

b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)

c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)

\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)

d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)

\(=x^2-2x-5\)