Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
Áp dụng dãy tỉ số bằng nhau
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}\)
\(=\dfrac{x-2y+3z-6}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)
Khi đó ta được \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{5}\\y=\dfrac{22}{5}\\z=\dfrac{31}{5}\end{matrix}\right.\)
Khi đó ta được
x−1/2=y−2/3=z−3/4
Hay: x−1/2=2(y−2)/6=3(z−3)/12
x−1/2=2y−4/6=3z−9/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x−1/2=2y−4/6=3z−9/12=(x−1)−(2y−4)+(3z−9)/2−6+12=x−1−2y+4+3z−9/2−6+12 =x−2y+3z−6/8=14−6/8=1
Suy ra : x - 1 = 2 => x = 3
y - 2 = 3 => y = 5
z - 3 = 4 => z = 7
\(\frac{\left(x-1\right)}{2}=\frac{y-2}{3}=\frac{\left(x-3\right)}{4}\)
Hay : \(x-\frac{1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)
\(x-\frac{1}{2}=2y-\frac{4}{6}=3z-\frac{9}{12}\)
Ap dung tinh chat cua day ti so bang nhau , ta co
\(x-\frac{1}{2}=2y-\frac{4}{6}=3z-\frac{9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=x-2y+3z-\frac{6}{8}=14-\frac{6}{8}=1\)
Nen : x - 1 = 2 => x = 3
y - 2 = 3 => y = 5
z - 3 = 4 => z = 7
Cách 1 : Nhân tỉ số thứ hai , thứ ba của \((1\) lần lượt với và 3 ta được :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-6}{2-6+12}=\frac{14-6}{8}=1\)
Suy ra : x - 1 = 2.1 => x = 3 ; y - 2 = 3.1 => y = 5 ; z - 3 = 4 . 1 => z = 7
Cách 2: Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k(k\inℤ)\)
=> \(\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}(}2)\)
Thay 2 vào 1 ta có :
\(2k+1-6k-4+12k+9=14\)
\(\Rightarrow8k+6=14\)
\(\Rightarrow8k=8\)
\(\Rightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot1+1=3\\y=3\cdot1+2=5\\z=4\cdot1+3=7\end{cases}}\)
Vậy x = 3 ; y = 5 ; z = 7
x-1/2=y-2/3=z-3/4=k
\(\Rightarrow x-1=2k\Rightarrow x=2k+1;y-2=3k\Rightarrow y=3k+2;z-3=4k\Rightarrow z=4k+3\)
ta có:
(2k+1)-2(3k+2)+3(4k+3)=14
2k+1-6k-4+12k+9=14
8k+6=14
8k=8
k=1
x=1.2+1=3
y=1.3+2=5
z=1.4+3=7