K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

Le Tran Anh này, bạn biết làm không mà bảo ng khác ngu? Nếu biết thì giải đi...

NV
31 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

31 tháng 12 2021

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

30 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh làm theo cách bình thường giúp em với nhá! 

13 tháng 10 2019

\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)

\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)

\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

18 tháng 4 2020

h2r r1000

12 tháng 6 2015

\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}=\frac{3}{4}\left(x+y\right)^2\)

(Áp dụng bất đẳng thức \(\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)

Tương tự: \(\sqrt{y^2+yz+z^2}\ge\frac{\sqrt{3}}{2}\left(y+z\right);\sqrt{z^2+zx+x^2}\ge\frac{\sqrt{3}}{2}\left(z+x\right)\)

Suy ra \(M\ge\sqrt{3}\left(x+y+z\right)=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Lời giải:

Vì \(xy+yz+xz=5\Rightarrow x^2+5=x^2+xy+yz+xz\)

\(\Leftrightarrow x^2+5=(x+y)(x+z)\)

\(\Rightarrow \sqrt{6(x^2+5)}=\sqrt{6(x+y)(x+z)}\)

Áp dụng BĐT AM-GM:

\(\sqrt{6(x+y)(x+z)}=\frac{\sqrt{6}}{2}.2\sqrt{(x+y)(x+z)}\leq \frac{\sqrt{6}}{2}(x+y+x+z)\)

\(\Leftrightarrow \sqrt{6(x^2+5)}\leq \frac{\sqrt{6}}{2}(2x+y+z)\)

Thực hiện tương tự với các hạng tử còn lại suy ra:

\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}\leq \frac{\sqrt{6}}{2}(4x+2y+4z)=2\sqrt{6}(x+y+z)\)

\(\Rightarrow \frac{3x+3y+3z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}}\geq \frac{3(x+y+z)}{2\sqrt{6}(x+y+z)}=\frac{3}{2\sqrt{6}}\)

Vậy min bằng \(\frac{3}{2\sqrt{6}}\)

Dấu bằng xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)