K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

quỳnh đăng lên giúp ai zậy ns đi nghe xem nào

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó, do \(ab+bc+ac=3\Rightarrow ab\geq 1\).

Với $ab\geq 1$ ta có bổ đề sau: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

Để cm bổ đề trên rất đơn giản. Quy đồng và biến đổi tương đương thu được \((a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Sử dụng bổ đề vào bài toán:

\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+ab+3}{abc^2+ab+c^2+1}(*)\)

Giờ ta sẽ cm \(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}(**)\)

\(\Leftrightarrow 2(2c^2+ab+3)\geq 3(abc^2+ab+c^2+1)\)

\(\Leftrightarrow c^2+3\geq 3abc^2+ab\)

\(\Leftrightarrow c^2+bc+ac\geq 3abc^2\)

\(\Leftrightarrow c+b+a\geq 3abc\).

BĐT trên đúng do theo AM-GM: \(3(a+b+c)=(ab+bc+ac)(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\) )

Do đó $(*)$ được cm.

Từ \((*),(**)\Rightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$