K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

quỳnh đăng lên giúp ai zậy ns đi nghe xem nào

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó, do \(ab+bc+ac=3\Rightarrow ab\geq 1\).

Với $ab\geq 1$ ta có bổ đề sau: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

Để cm bổ đề trên rất đơn giản. Quy đồng và biến đổi tương đương thu được \((a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Sử dụng bổ đề vào bài toán:

\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+ab+3}{abc^2+ab+c^2+1}(*)\)

Giờ ta sẽ cm \(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}(**)\)

\(\Leftrightarrow 2(2c^2+ab+3)\geq 3(abc^2+ab+c^2+1)\)

\(\Leftrightarrow c^2+3\geq 3abc^2+ab\)

\(\Leftrightarrow c^2+bc+ac\geq 3abc^2\)

\(\Leftrightarrow c+b+a\geq 3abc\).

BĐT trên đúng do theo AM-GM: \(3(a+b+c)=(ab+bc+ac)(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\) )

Do đó $(*)$ được cm.

Từ \((*),(**)\Rightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

NV
24 tháng 11 2018

Bạn ghi sai đề à? Số đầu tiên phải là \(\dfrac{1}{\sqrt{1}}\) chứ sao là \(\dfrac{1}{\sqrt{n}}\), mặc dù đề như vậy làm vẫn được nhưng chắc chẳng ai cho dãy quy luật kiểu đó

\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=2\left(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+...+\dfrac{1}{2\sqrt{n}}\right)\)

\(\Rightarrow A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)

\(\Rightarrow A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)

Ta chứng minh \(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\Leftrightarrow2\sqrt{n+1}>\sqrt{n}+2\)

\(\Leftrightarrow4\left(n+1\right)>n+4+4\sqrt{n}\Leftrightarrow3n>4\sqrt{n}\Leftrightarrow\sqrt{n}>\dfrac{4}{3}\)

\(\Leftrightarrow n>\dfrac{16}{9}\) (đúng với mọi \(n\ge2\) )

Vậy \(A>\sqrt{n}\)

- Ta chứng minh tiếp \(A< 2\sqrt{n}\)

\(A=1+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=1+\dfrac{2}{2\sqrt{2}}+...+\dfrac{2}{2\sqrt{n}}\)

\(\Rightarrow A< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{n}-1\right)=2\sqrt{n}-1< 2\sqrt{n}\) (đpcm)

Vậy: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)

24 tháng 11 2018

Nguyễn Việt Lâmtran nguyen bao quanBạch Tuyên NghiNguyễn Thanh Hằng help me