K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

c, Gọi ƯCLN(7n+4; 9n+5) là d. Ta có:

7n+4 chia hết cho d => 63n+36 chia hết cho d

9n+5 chia hết cho d => 63n+35 chia hết cho d

=> 63n+36-(63n+35) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(7n+4; 9n+5) = 1

=> \(\frac{7n+4}{9n+5}\)tối giản (đpcm)

4 tháng 4 2020

a, Gọi ƯC(2n+1; 4n+3)=d                     

 Ta có:(2n+1) chia hết cho d

         =>(4n+3) chia hét cho d

=> (2n+1) chia hết cho d

     (4n+3) chia hết cho d

=> 4n+2 chia hết cho d 

     4n+3 chia hết cho d

=>(4n+2) - (4n+3) chia hết cho d

=> -1 chia hết cho d

=> d thuộc {1; -1}

Vậy phân số 2n+1/4n+3 là phân số tối giản

CHÚC BẠN HỌC TỐT !!!! :)

10 tháng 2 2018

Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!

a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )

Ta có: 2n + 3 chia hết cho d

=> 2 ( 2n + 3 ) chia hết cho d

=> 4n + 6 chia hết cho d

Mà: 4n + 1 chia hết cho d

=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d

=> 5 chia hết cho d

=> d thuộc Ư ( 5 )

Giả sử phân số không tối giản:

=> 2n + 3 chia hết cho 5

=> 2n + 3 + 5 chia hết cho 5

=> 2n + 8 chia hết cho 5

=> 2 ( n + 4 ) chia hết cho 5

Vì ƯCLN ( 2; 5 ) = 1

=> n + 4 chia hết cho 5

=> n + 4 = 5k ( k thuộc N* )

=> n = 5k - 4

Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

10 tháng 2 2018

b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 ) 

Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )

          7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3  chia hết cho d ( 2 )

Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d

=> ( 1 ) - ( 2 ) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư ( 11 )

Giả sử phân số không tối giản:

=> 7n + 1 chia hết cho 11

=> 7n + 1+ 55 chia hết cho 11

=> 7n + 56 chia hết cho 11

=> 7 ( n + 8 ) chia hết cho 11

Vì ƯCLN ( 7; 11 ) = 1

=> n + 8 chia hết cho 11

=> n + 8 = 11k ( k thuộc N* )

=> n = 11k - 8

Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^

30 tháng 7 2021

cùng nhau  ko phải bằng nhau

14 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

15 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3

nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)

c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9

nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)

20 tháng 3 2017

gọi \(ƯCLN_{\left(7n+10;5n+7\right)}=d\) ta có:

\(7n+10⋮d\\ 5n+7⋮d\)

\(\Rightarrow\left(7n+10\right)-\left(5n+7\right)⋮d\\ \Rightarrow5\left(7n+10\right)-7\left(5n+7\right)⋮d\\ \Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d\inƯ_{\left(1\right)}=\left\{1;-1\right\}\)

vậy \(ƯCLN_{\left(7n+10;5n+7\right)}=\left\{1;-1\right\}\)

vậy \(\dfrac{7n+10}{5n+7}\) là phân số tối giản

Câu 1: 

\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)

\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)

\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)

Câu 2: 

\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)

\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)