Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+b=3\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3-4a=-5\end{matrix}\right.\)
\(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n_{\left(\Delta\right)}}=\left(2;3\right).\)
Phương trình đường thẳng \(\left(d\right)\) song song với đường thẳng \(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của đường thẳng \(\Delta\) cũng là VTPT của đường thẳng \(\left(d\right).\)
\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right).\)
Ta có đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right)\) làm VTPT; đi qua điểm \(A\left(3;-1\right).\)
\(\Rightarrow\) Phương trình đường thẳng \(\left(d\right)\) là:
\(2\left(x-3\right)+3\left(y+1\right)=0.\\ \Leftrightarrow2x-6+3y+3=0.\\ \Leftrightarrow2x+3y-3=0.\)
+ Đường thẳng song song với Ox có dạng y = b.
+ Đường thẳng đi qua điểm A(1 ; –1) nên b = – 1.
Vậy đường thẳng cần tìm là y = –1.
- Đường thẳng (d, ) có : \(\overrightarrow{u}\left(-1;6\right)\)
Mà (d) song song với (d,)
=> \(\overrightarrow{u}\left(-1;6\right)\) là vecto chỉ phương của (d)
=> Phương trình tham số của (d) là :
\(\left\{{}\begin{matrix}x=3-t\\y=-4+6t\end{matrix}\right.\) \(\left(t\in R\right)\)
Vậy ...
Hiện tại là characters và symbols của mình ko bấm được bạn ạ, máy tính mình hư mang đi sửa rồi, gợi ý thôi nhé :))
Câu a đơn giản thôi, bạn viết véctơ AB ra, nghĩa là lúc này, đường thẳng đi qua 2 điểm AB có véctơ chủ phương là AB, bạn viết véctơ pháp tuyến ra là được, rồi chọn 1 trong 2 điểm A,B làm x0,y0 là ok rồi :))
Còn câu b, trước hết là bạn phải viết ptđt của delta đã, trong sgk có instructions đó :)
Rồi sau đó, như mình đã nói với bạn hồi chiều, 2 đt song song thì có chung véctơ pháp tuyến, giờ bài toán chỉ cong là: viết ptđt đi qua điểm A và có véctơ pháp tuyến là...
Đơn giản thôi hà :D
Các đường thẳng đều có phương trình dạng \(y=ax+b\). Các đường thẳng song song với nhau đều có cùng một hệ số a. Do đó các phương trình của các đường thẳng song song với đường thẳng \(y=3x-2\) đều có hệ số \(a=3\)
a) Phương trình cần tìm có dạng \(y=3x+b\). Vì đường thẳng đi qua điểm \(M\left(2;3\right)\), nên ta có \(3=3.2+b\Leftrightarrow b=-3\)
Vậy phương trình của đường thẳng đó là \(y=3x-3\)
b) \(y=3x+5\)
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\)
Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).
Phương trình đường thẳng denta có dạng: \(y=k\left(x-1\right)-3=kx-k-3\)
Để denta cắt 2 trục Ox, Oy tạo thành tam giác \(\Rightarrow k\ne\left\{0;-3\right\}\)
Khi đó ta có: \(A\left(\dfrac{k+3}{k};0\right)\) \(\Rightarrow OA=\left|\dfrac{k+3}{k}\right|\)
\(B\left(0;-k-3\right)\Rightarrow OB=\left|k+3\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow OA.OB=4\)
\(\Leftrightarrow\dfrac{\left(k+3\right)^2}{\left|k\right|}=4\Leftrightarrow\left(k+3\right)^2=4\left|k\right|\)
\(\Rightarrow\left[{}\begin{matrix}k^2+6k+9=4k\\k^2+6k+9=-4k\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k^2+2k+9=0\left(vn\right)\\k^2+10k+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=-1\\k=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-x-2\\y=-9x+6\end{matrix}\right.\)
a) Phương trình đường thẳng (d) qua A(4; 3) và B(2;- 1) có dạng tổng quát là y = ax + b, trong đó a, b là các hằng số cần xác định.
Vì A(4; 3) ∈ d nên ta có phương trình của (d), do đó ta có: 3 = a.4 + b.
Tương tự B(2;- 1) ∈ d nên ta có: - 1 = a.2 + b
Từ đó ta tìm được phương trình đường thẳng AB là: y = 2x - 5.
Phương trình đường thẳng AB là: y = 2x - 5.
b) Đáp số: y = - 1.