K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Gọi hệ số góc của \(\Delta\) là k \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(k;-1\right);\overrightarrow{n_d}=\left(3;1\right)\)

Yêu cầu bài toán : 

\(\Leftrightarrow\frac{\left|3k-1\right|}{\sqrt{1+k^2}.\sqrt{10}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow2k^2-3k-2=0\)

\(\Leftrightarrow k=-\frac{1}{2}\) hoặc k = 2

Từ đó ta có được 2 tiếp tuyến là \(y=2x-2;y=2x-\frac{22}{27}\)

29 tháng 4 2016

Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)

\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)

a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :

\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)

\(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)

\(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)

b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)

Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :

\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)

                   \(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)

* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào

* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)

             + Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến

             + Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào

 
27 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\)là tiếp điểm. Ta có : \(y'=-3x^2+3\)

a) Vì tiếp tuyến vuông góc với đường thẳng \(x+y-1=0\Rightarrow y=-x+1\) nên ta có :

\(y'\left(x_0\right)=1\Leftrightarrow-3x^2_0+3=1\Leftrightarrow x_0=\pm\frac{\sqrt{6}}{3}\)

\(x_0=\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18+7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x-\frac{\sqrt{6}}{3}\right)+\frac{18+7\sqrt{6}}{9}=x+\frac{18+7\sqrt{6}}{9}\)

\(x_0=-\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18-7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x+\frac{\sqrt{6}}{3}\right)+\frac{18-7\sqrt{6}}{9}=x+\frac{18-7\sqrt{6}}{9}\)

 b) Ta có \(y'=-3x^2_0+3\le3\) với mọi \(x_0\Rightarrow maxy'=3\) đạt được khi \(x_0=0\)Tiếp tuyến có hệ số góc nhỏ nhất có tiếp điểm là \(M\left(0;2\right)\) và \(y'\left(x_0\right)=3\) nên ta có phương trình : \(y=3x+2\) c) Gọi hệ số góc của tiếp tuyến là k thì \(\overrightarrow{n}\left(k;-1\right)\) là vectơ pháp tuyến của \(\Delta\)

Vì \(\Delta\) tạo với \(\Delta'\) một góc bằng \(45^0\) nên \(\frac{\left|k-1\right|}{\sqrt{k^2+1}.\sqrt{2}}=\frac{\sqrt{2}}{2}\Leftrightarrow k=0\)

Ta có \(f'\left(x_0\right)=k\Leftrightarrow-3x^2_0+3=0\Leftrightarrow x_0=\pm1\)

\(x_0=1\Rightarrow y_0=4\Rightarrow\Delta:y-4=0\)

\(x_0=-1\Rightarrow y_0=-2\Rightarrow\Delta:y+2=0\)

   

 

7 tháng 3 2018

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = − ( x + 1 ) 3  + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3  + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) =  ( x + 1 ) 3  − 3x – 4


c) Ta có:  ( x + 1 ) 3  = 3x + m (1)

⇔  ( x + 1 ) 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  ( x + 1 ) 3  − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3 ( x + 1 ) 2  – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

22 tháng 6 2018

Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀ x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

16 tháng 5 2019

a) Học sinh tự làm

b) Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

29 tháng 4 2016

Gọi \(M\left(x_0;2x^3_0+3x^2_0-12x_0-1\right)\) là tiếp điểm

\(\Delta:y=\left(6x^2_0+6x_0-12\right)\left(x-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)

Vì \(O\in\Delta\) nên \(0=\left(6x^2_0+6x_0-12\right)\left(-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)

                        \(\Leftrightarrow4x^3_0+3x^2_0+1\Leftrightarrow x_0=-1\Rightarrow y_0=12;y'\left(x_0\right)=-12\)

Vậy \(\Delta:y=-12x\)

                      

5 tháng 7 2017

Đáp án A

3 tháng 11 2017