Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mặt phẳng (P) vuông góc với Ox nên (P) nhận vecto chỉ phương đơn vị \(\overrightarrow{i}=\left(1;0;0\right)\) của Ox làm vecto pháp tuyến. Do đó \(\left(P\right)\) có phương trình :
\(1.\left(x-1\right)+0\left(y-2\right)+0\left(z-3\right)=0\)
hay \(x-1=0\)
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
Đáp án D
Do mặt phẳng (P ) vuông góc trục Oz nên mặt phẳng này nhận vecto k → = (0; 0; 1) làm vecto pháp tuyến.
Lại có:
Điểm A(-2 ; 1 ; -2) thuộc mặt phẳng (P) nên phương trình (P): 0(x + 2) + 0( y - 1) + 1(z + 2)= 0 hay z + 2= 0
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
vì mặt phẳng (P) vuông góc với Ox nên (P) nhận vectơ chỉ phương đơn vị \(\overrightarrow{i}\)=(1.0.0) của Ox làm vectơ pháp tuyến. do đó (P) có phương trình
x-1=0