Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
Những hằng đẳng thức đáng nhớ chắc không còn xa lạ gì với các bạn . Hôm nay Kiến sẽ nói kỹ hơn về 7 hằng đẳng thức quan trọng : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương và cuối cùng là hiệu hai lập phương.
CHUYÊN ĐỀ: NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
- A. Lý thuyết
- 1. Bình phương của một tổng
- Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai. (A + B)2 = A2 + 2AB + B2 |
Ví dụ:
- 2. Bình phương của một hiệu
- Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai. (A - B)2 = A2 - 2AB + B2 |
Ví dụ:
- 3. Hiệu hai bình phương
- Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó. A2 – B2 = (A + B)(A – B) |
Ví dụ:
- 4. Lập phương của một tổng
- Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai. (A + B)3 = A3 + 3A2B + 3AB2 + B3 |
Vú dụ:
- 5. Lập phương của một hiệu
- Lập phương của một hiệu = lập phương số thứ nhất - 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai - lập phương số thứ hai. (A - B)3 = A3 - 3A2B + 3AB2 - B3 |
Ví dụ:
- 6. Tổng hai lập phương
- Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu. A3 + B3 = (A + B)(A2 – AB + B2) |
Ví dụ:
- 7. Hiệu hai lập phương
- Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng. A3 – B3 = (A – B)(A2 + AB + B2) |
Giải thích các bước giải:
(A+B)²=A²+2AB+B²(A+B)²=A²+2AB+B²
(A−B)²=A²−2AB+B²(A−B)²=A²−2AB+B²
A²−B²=(A−B)(A+B)A²−B²=(A−B)(A+B)
(A+B)³=A³+3A²B+3AB²+B³(A+B)³=A³+3A²B+3AB²+B³
(A−B)³=A³−3A²B+3AB²−B³(A−B)³=A³−3A²B+3AB²−B³
A³+B³=(A+B)(A²−AB+B²)A³+B³=(A+B)(A²−AB+B²)
A³−B³=(A−B)(A²+AB+B²)
Bảy hằng đẳng thức đáng nhớ:
1) (A + B)2 = A2 + 2AB + B2
2) (A – B)2 = A2 – 2AB + B2
3) A2 – B2 = (A – B)(A + B)
4) (A + B)3 = A3 + 3A2B + 3AB2 + B3
5) (A – B)3 = A3 – 3A2B + 3AB2 – B3
6) A3 + B3 = (A + B)(A2 – AB + B2)
7) A3 – B3 = (A – B)(A2 + AB + B2)
Ta có bảy hằng đẳng thức đáng nhớ:
1. (A + B)2 = A2 + 2AB + B2
2. (A – B)2 = A2 – 2AB + B2
3. A2 – B2 = (A + B)(A – B)
4. (A + B)3 = A3 + 3A2B + 3AB2 + B3
5. (A – B)3 = A3 – 3A2B + 3AB2 – B3
6. A3 + B3 = (A + B)(A2 – AB + B2)
7. A3 – B3 = (A – B)(A2 + AB + B2)
\(\left(A-B\right)^2=A^2-2AB-B^2\)
\(\left(A+B\right)^2=A^2+2AB+B^2\)
\(A^2-B^2=\left(A+B\right)\left(A-B\right)\)
\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)
\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)
\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
1. (a + b)2 = a2 + 2ab + b2
2. (a - b)2 = a2 - 2ab + b2
3. (a + b)(a - b) = a2- b2
4. (a + b)3 = a3 + 3a2b + 3ab2 + b3
5. (a - b)3 = a3- 3a2b + 3ab2 - b3
6. (a + b)(a2 - ab + b2) = a3 + b3
7. (a - b)(a2 + ab + b2) = a3 - b3