Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{3}{4}=\frac{30}{40};\frac{3}{5}=\frac{24}{40}\)
\(\Rightarrow\)3 số hữu tỉ xen giữa 2 số \(\frac{30}{40}\)và \(\frac{24}{40}\)là : \(\frac{28}{40};\frac{26}{40};\frac{25}{40}\)
Vậy 3 số hữu tỉ xen giữa 2 số \(\frac{3}{4}\)và \(\frac{3}{5}\)là :\(\frac{7}{10};\frac{13}{20};\frac{5}{8}\)
Ta có : \(\frac{-1}{2}=\frac{-12}{24};\frac{-1}{3}=\frac{-8}{24}\)
\(\Rightarrow\)3 số hữu tỉ xen giữa 2 số \(\frac{-12}{24}\)và \(\frac{-8}{24}\)là : \(\frac{-9}{24};\frac{-10}{24};\frac{-11}{24}\)
Vậy 3 số hữu tỉ xen giữa 2 số : \(\frac{-1}{2}\)và \(\frac{-1}{3}\)là : \(\frac{-3}{8};\frac{-5}{12};\frac{-11}{24}\)
b) Ta có : \(\frac{2}{3}=\frac{8}{12};\frac{1}{6}=\frac{2}{12}\)
\(\Rightarrow\)5 số hữu tỉ xen giữa 2 số : \(\frac{8}{12}\)và \(\frac{2}{12}\)là : \(\frac{7}{12};\frac{6}{12};\frac{5}{12};\frac{4}{12};\frac{3}{12}\)
Vậy 5 số hữu tỉ xen giữa 2 số \(\frac{2}{3}\)và \(\frac{1}{6}\)là : \(\frac{7}{12};\frac{1}{2};\frac{5}{12};\frac{1}{3};\frac{1}{4}\)
a) Ta có: \(\frac{-1}{3}=-0,3333...\)
\(\frac{-1}{4}=-0,25\)
Vây ta có 3 số thoả mãn lớn hơn \(\frac{-1}{3}\)và \(\frac{-1}{4}\)là: \(-0,32;-0,30;-0,26.\)
b) Ta có: \(\frac{-1}{100}=-0,01\)
\(\frac{1}{100}=0,01\)
Vậy ta có 3 số hữu tỉ thảo mãn lớn hơn \(\frac{-1}{100}\)và \(\frac{1}{100}\)là: \(0;0,01;0,13.\)
Áp dụng tính chất \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}\)
Ta có \(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-1\right)}{3+4}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-2\right)}{3+7}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-3\right)}{3+10}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
Gọi số cần tìm là a
Ta có : \(\frac{-1}{3}< a< \frac{-1}{4}\)
\(\frac{-16}{48}< a< \frac{-12}{48}\)
\(\Rightarrow a\in\left\{\frac{-5}{16};\frac{-7}{24};\frac{-13}{48}\right\}\)