Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
bạn tự CM : FE//CA => AEFC là hình thang mà góc A = 90 độ => AEFC là hình thang vuông
Ta có : AE= EB= AB/2=3/2= 1,5 ( E trung điểm AB)
tam giác ABC là nữa tam giác đều =>BC=2AB=2.3=6 . Tính dc AC =\(3\sqrt{3}\)( Py-ta-go)
Theo hệ quả d/l talet FE//AC => \(\frac{EF}{AC}\)=\(\frac{EB}{AB}\)<=> EF = \(\frac{AC.EB}{AB}\)<=> EF = \(\frac{3\sqrt{3}.2}{6}\)=\(\sqrt{3}\)
Theo d/l Talet FE//AC => \(\frac{AE}{AB}=\frac{CF}{BC}\Rightarrow CF=\frac{AE.BC}{AB}=\frac{2.6}{3}=4\)
Xét tứ giác AEFC có FE//AC
nên AEFC là hình thang
mà \(\widehat{CAE}=90^0\)
nên AEFC là hình thang vuông
a: Xét ΔABC và ΔADE có
AB/AD=AC/AE
góc A chung
=>ΔABC đồng dạng với ΔADE
b: ΔBAC đồng dạng với ΔDAE
=>góc ABC=góc ADE
=>BC//DE
c: AE+EC=AC
=>EC=8cm
BE là phân giác góc ABC
=>AB/AE=BC/CE
=>BC/8=9/4
=>BC=18cm
d: DE//BC
=>DE/BC=AE/AC=1/3
=>DE/18=1/3
=>DE=6cm
Yêu cầu là gì vậy bạn
Chỉ là vẽ hình thôi ạ!!