K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Qũy đạo chuyển động của điểm M là hai cung tròn đối xứng nhau qua dây AB

24 tháng 8 2019

Câu hỏi của Le Minh Hieu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.b/Chứng minh:OK^2 = AH.(2R - AH).c/Tìm vị trí...
Đọc tiếp

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.

2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).

3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.

a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.

b/Chứng minh:OK^2 = AH.(2R - AH).

c/Tìm vị trí của H để P = MA.MB.MC.MD có giá trị lớn nhất.

4/a/Cho (O;R) và đường thẳng d không đi qua (O).Lấy điểm M di chuyển được trên đường thẳng d. Từ M vẽ hai tiếp tuyến MP,MQ của (O). Chứng minh: Khi M thay đổi vị trí trên đường thẳng d thì dây cung PQ luôn đi qua 1 điểm cố định.

b/Cho tam giác có cạnh lớn nhất bằng 2. Người ta lấy 5 điểm phân biệt trong tam giác này. Chứng minh: Luôn tồn tại 2 điểm có khoảng cách không vượt quá 1. 

TỚ ĐANG CẦN GẤP LẮM. MONG CÁC BẠN GIẢI HỘ GIÙM MÌNH VỚI GHEN.CẢM ƠN NHIỀU NHIỀU !!!!!

0
22 tháng 3 2018

Tự vẽ hình nha, 

Câu a, Ta có : tứ giác AHMK là hình chữ nhật nên MK=AH và HM=AK 

Mà HM, MK lần lượt là bán kính của (H) và (M)

Xét tam giác HAK có : theo bđt tam giác : HA-HB<HK<HA+HK 

Hay MK-MH<HK<MH+MK => hai đường tròn luôn cắt nhau ( giả sử MK>MH)

28 tháng 3 2018

Ta có \(\widehat{NMH}=\widehat{NCB};\widehat{NMK}=\widehat{NBC}\)

Do AKMH là hình chữ nhật nên

\(\widehat{NMH}+\widehat{NMK}=90\Rightarrow\widehat{NCB}+\widehat{NBC}=90\)

\(\Rightarrow\widehat{BNC}=90\). Vẽ hình vuông ABEC

Ta có A, N, B, E, C cùng thuộc đường tròn đường kính BC cố định

Ta lại có \(\widehat{NEB}=\widehat{NCB}\)mà \(\widehat{NCB}=\widehat{NMH}\)

\(\widehat{NEB}=\widehat{NMH}\), do \(MH//EB\)nên ba điểm N, M, E thẳng hàng. Vậy MN luôn đi qua điểm E cố định

14 tháng 10 2017

chắc bạn xem bộ đó rồi

14 tháng 10 2017

ý bạn là j