K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Qũy đạo chuyển động của điểm M là hai cung tròn đối xứng nhau qua dây AB

24 tháng 8 2019

Câu hỏi của Le Minh Hieu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

9 tháng 7 2017

a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM =  O A 2 = R 2

b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM

c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là  A O M ^ = 60 0 . Sử dụng tỉ số lượng giác của góc  A O M ^ , tính được OM=2OA=2R, tức là M cách O một khoảng 2R

d, Kết hợp ý a) và b) => OK.OH =  R 2 => OK = R 2 O H

Mà độ dài OH không đổi nên độ dài OK không đổi

Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.b/Chứng minh:OK^2 = AH.(2R - AH).c/Tìm vị trí...
Đọc tiếp

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.

2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).

3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.

a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.

b/Chứng minh:OK^2 = AH.(2R - AH).

c/Tìm vị trí của H để P = MA.MB.MC.MD có giá trị lớn nhất.

4/a/Cho (O;R) và đường thẳng d không đi qua (O).Lấy điểm M di chuyển được trên đường thẳng d. Từ M vẽ hai tiếp tuyến MP,MQ của (O). Chứng minh: Khi M thay đổi vị trí trên đường thẳng d thì dây cung PQ luôn đi qua 1 điểm cố định.

b/Cho tam giác có cạnh lớn nhất bằng 2. Người ta lấy 5 điểm phân biệt trong tam giác này. Chứng minh: Luôn tồn tại 2 điểm có khoảng cách không vượt quá 1. 

TỚ ĐANG CẦN GẤP LẮM. MONG CÁC BẠN GIẢI HỘ GIÙM MÌNH VỚI GHEN.CẢM ƠN NHIỀU NHIỀU !!!!!

0