Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
Câu 1:
a: Xét ΔADC có ME//DC
nên \(\dfrac{AM}{MD}=\dfrac{AE}{EC}\)
b: Xét ΔCAB có EF//AB
nên \(\dfrac{CE}{EA}=\dfrac{CF}{FB}\)
=>\(\dfrac{AE}{EC}=\dfrac{BF}{FC}\)
c: ta có: \(\dfrac{AM}{MD}=\dfrac{AE}{EC}\)
\(\dfrac{AE}{EC}=\dfrac{BF}{FC}\)
Do đó: \(\dfrac{AM}{MD}=\dfrac{BF}{FC}\)
d: Ta có: \(\dfrac{AM}{MD}=\dfrac{BF}{FC}\)
=>\(\dfrac{AM+MD}{MD}=\dfrac{BF+FC}{FC}\)
=>\(\dfrac{AD}{MD}=\dfrac{BC}{FC}\)
=>\(\dfrac{DM}{DA}=\dfrac{CF}{CB}\)
Bài 2:
Xét ΔADC có OM//DC
nên \(\dfrac{OM}{DC}=\dfrac{AM}{AD}\)(1)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BN}{BC}\left(2\right)\)
Xét hình thang ABCD có MN//AB//CD
nên \(\dfrac{AM}{MD}=\dfrac{BN}{NC}\)
=>\(\dfrac{MD}{AM}=\dfrac{CN}{BN}\)
=>\(\dfrac{MD+AM}{AM}=\dfrac{CN+BN}{BN}\)
=>\(\dfrac{AD}{AM}=\dfrac{BC}{BN}\)
=>\(\dfrac{AM}{AD}=\dfrac{BN}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra OM=ON
Nửa chu vi của mảnh vườn là:
450:2=225(m)
Gọi chiều dài của mảnh vườn là x(m)(Điều kiện: 0<x<225)
Chiều rộng của mảnh vườn là: 225-x(m)
Vì khi giảm chiều dài đi 20% và tăng chiều rộng lên 25% thì chu vi không đổi nên ta có phương trình:
\(\dfrac{4}{5}x+\dfrac{5}{4}\left(225-x\right)=225\)
\(\Leftrightarrow\dfrac{4}{5}x+\dfrac{1125}{4}-\dfrac{5}{4}x-225=0\)
\(\Leftrightarrow\dfrac{-9}{20}x+\dfrac{225}{4}=0\)
\(\Leftrightarrow\dfrac{-9}{20}x=-\dfrac{225}{4}\)
\(\Leftrightarrow x=\dfrac{-225}{4}:\dfrac{-9}{20}=\dfrac{225}{4}\cdot\dfrac{20}{9}=\dfrac{4500}{36}=125\)(thỏa ĐK)
Chiều rộng của mảnh vườn là:
225-125=100(m)
Vậy: Chiều dài và chiều rộng của mảnh vườn đó là 125m và 100m
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: AH=căn 5^2-3^2=4cm
BI là phân giác
=>HI/HB=IA/AB
=>HI/3=IA/5=(HI+IA)/(3+5)=0,5
=>HI=1,5cm; IA=1,5cm
Xét △ACD và △BDC có:
\(\begin{matrix}AD=BC\left(gt\right)\\\hat{D}=\hat{C}\left(gt\right)\\CD\text{ }chung\end{matrix}\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\Rightarrow\hat{ACD}=\hat{BDC}\text{ }hay\text{ }\text{ }\hat{ICD}=\hat{IDC}\)
⇒ △ICD cân tại I ⇒ \(ID=IC\left(1\right)\)
△KCD có: \(\hat{C}=\hat{D}\) ⇒ △KCD cân tại K ⇒ \(KD=KC\left(2\right)\)
Từ (1) và (2). Suy ra KI là đường trung trực của CD (3)
Tương tự ta cũng có: \(IA=IB;KA=KB\). Suy ra KI là đường trung trực của AB (4)
Từ (3) và (4). Vậy: KI là đường trung trực của AB và CD
Xet tam giac ABC va tam giac AMN co :
MN // BC ( GT )
=> tam giac ABC ~ tam giac AMN
=> AM/MN=AB/BC hay AM/AB=MN/BC
Ma AM = 1/3 AB , MN = 4 cm
=> 1/3=4/BC => BC = 12 cm
Dễ thấy AB,AC là đường trung bình tam giác NMI
Do đó \(AC=\dfrac{1}{2}MI=MB\) (B là trung điểm MI) và AC//MI hay AC//MB
Do đó AMBC là hbh (1)
Mà AB là đtb tg NMI nên AB//NI
Mà tg MNI cân tại M nên MC là trung tuyến cx là đường cao
Do đó \(MC\perp NI\Rightarrow MC\perp AB\left(2\right)\)
Từ (1)(2) ta được AMBC là hình thoi
\(Giup mik voi\)