Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét tứ giác MNCB có MN//BC(cmt)
nên MNCB là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
b) Ta có: NM=NE(gt)
mà M,N,E thẳng hàng
nên N là trung điểm của ME
hay \(MN=\dfrac{ME}{2}\)(2)
Từ (1) và (2) suy ra ME=BC
Xét tứ giác MECB có
ME//BC(MN//BC, E∈MN)
ME=BC(cmt)
Do đó: MECB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: ME//BC(MN//BC, E∈MN)
nên \(\widehat{NEF}=\widehat{CBF}\)(hai góc so le trong)
Xét ΔNEF và ΔCBF có
\(\widehat{NEF}=\widehat{CBF}\)(cmt)
\(\widehat{EFN}=\widehat{BFC}\)(hai góc đối đỉnh)
Do đó: ΔNEF∼ΔCBF(g-g)
⇒\(\dfrac{NE}{CB}=\dfrac{NF}{CF}\)(Các cặp cạnh tương ứng tỉ lệ)
⇒\(\dfrac{NF}{CF}=\dfrac{1}{2}\)
hay \(CF=2\cdot NF\)
Ta có: CF+NF=NC(F nằm giữa N và C)
\(\Leftrightarrow2\cdot NF+NF=NC\)
\(\Leftrightarrow NC=2\cdot NF\)
mà \(AC=2\cdot NC\)(N là trung điểm của AC)
nên \(AC=6\cdot NF\)(đpcm)
d) Hình bình hành MECB trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MBC}=90^0\\MB=BC\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\)
Vậy: Khi ΔABC có thêm điều kiện \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\) thì hình bình hành MECB trở thành hình vuông
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân