K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

\(A=\frac{\left|x-1\right|+\left|x\right|-x}{3x^2+4x+1}=\frac{1-x-x-x}{3x^2+3x+x+1}=\frac{1-3x}{\left(x+1\right)\left(3x+1\right)}\)

\(B=\frac{\left|2x-1\right|+x}{3x^2-22x+7}=\frac{1-2x+x}{3x^2-21x-x+7}=\frac{1-x}{\left(x-7\right)\left(3x-1\right)}\)

21 tháng 6 2016

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)

\(=9\)

Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x

21 tháng 6 2016

b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)

 

 

Bài 2: 

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)

b: Thay x=1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)

c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)

=>6(x-2)=-1/2

=>x-2=-1/12

hay x=23/12

31 tháng 3 2020

\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

1 tháng 4 2020

ĐKXD: x\(\ne\)-1,-2,-3

Ta có

\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

Chúc bạn học tốt

7 tháng 4 2019

a) \(x^2-5x+6< 0\)

\(\Leftrightarrow x^2-2x-3x+6< 0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)

\(\Leftrightarrow2< x< 3\)

Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình

b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )

\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)

\(\Leftrightarrow0< x< \frac{5}{3}\)

Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình

29 tháng 9 2016

a/ Số hạng thứ \(n=\frac{n\left(n+1\right)}{2}\) => số hạng thứ \(n-1=\frac{\left(n-1\right)\left(n-1+1\right)}{2}=\frac{n\left(n-1\right)}{2}\)

Tổng của hai số hạng n-1 và n là

\(\frac{n\left(n-1\right)}{2}+\frac{n\left(n+1\right)}{2}=n^2\) là 1 số chính phương


 

29 tháng 9 2016

a/ Ta thấy n = 0 không thuộc dãy số nên ta xét n \(\ge1\). Ta có

\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)

\(\frac{n^2+n+n^2+3n+2}{2}\)

\(n^2+2n+1=\left(n+1\right)^2\)

Vậy tổng 2 số liên tiếp trong dãy là số chính phương

29 tháng 9 2016

tui rất muốn làm, nhưng dạng tổng quát sai nên k làm dc

ví dụ: trg dãy số ...6,10...(6 rồi đến 10) nhưng thay vào

n(n+1)/ 2 = 6.7/2 =21 chứ không =10?