K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

\(A=\frac{\left|x-1\right|+\left|x\right|-x}{3x^2+4x+1}=\frac{1-x-x-x}{3x^2+3x+x+1}=\frac{1-3x}{\left(x+1\right)\left(3x+1\right)}\)

\(B=\frac{\left|2x-1\right|+x}{3x^2-22x+7}=\frac{1-2x+x}{3x^2-21x-x+7}=\frac{1-x}{\left(x-7\right)\left(3x-1\right)}\)

31 tháng 3 2020

\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

1 tháng 4 2020

ĐKXD: x\(\ne\)-1,-2,-3

Ta có

\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

Chúc bạn học tốt

Bài 2: 

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)

b: Thay x=1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)

c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)

=>6(x-2)=-1/2

=>x-2=-1/12

hay x=23/12

26 tháng 2 2018

bài này là giải phương trình hả bn ?

28 tháng 2 2018

1.

<=> 7 - 2x - 4 = -x - 4

<=> -2x + x = -4 -7 + 4

<=> -x = -7

<=> x = 7

       Vậy S = { 7 }

2.

<=> \(\frac{2\left(3x-1\right)}{6}\)\(\frac{3\left(2-x\right)}{6}\)

<=> 2( 3x - 1 ) = 3( 2 - x )

<=> 6x -2 = 6 - 3x

<=> 6x + 3x = 6 + 2

<=> 9x = 8

<=> x = \(\frac{8}{9}\)

       Vậy S =  \(\left\{\frac{8}{9}\right\}\)

3.

<=> \(\frac{6x+10}{3}-\frac{x}{2}=5-\frac{3x+3}{4}\)

<=> \(\frac{4\left(6x+10\right)}{12}-\frac{6x}{12}=\frac{60}{12}-\frac{3\left(3x+3\right)}{12}\)

<=> 4( 6x + 10 ) - 6x = 60 - 3( 3x + 3 )

<=> 24x + 40 - 6x = 60 - 9x -9

<=> 18x + 40 = 51 - 9x

<=> 18x + 9x = 51 - 40

<=> 27x = 11

<=> x = \(\frac{11}{27}\)

       Vậy S = \(\left\{\frac{11}{27}\right\}\)

<=> 

29 tháng 3 2020

1) ĐKXĐ : \(\left\{{}\begin{matrix}x^3-1\ne0\\x^3+x\ne0\\x^2+x\ne0\\3x+\left(x-1\right)^2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x-1\ne0\\x\left(x^2+1\right)\ne0\\x\left(x+1\right)\ne0\\x^2+x+1\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-1\ne0\\x\ne0\\x+1\ne0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne0\\x\ne-1\\\left(x+\frac{1}{2}\right)^2\ne-\frac{3}{4}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne\pm1\\x\ne0\end{matrix}\right.\)

2) Ta có : \(P=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

=> \(P=\left(\frac{x^2-2x+1}{3x+x^2-2x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

=> \(P=\left(\frac{\left(x-1\right)^2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)

=> \(P=\left(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)

=> \(P=\left(\frac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)

=> \(P=\left(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)

=> \(P=\left(\frac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)

=> \(P=1:\frac{x+1}{x^2+1}=\frac{x^2+1}{x+1}\)

- Thay P = 0 vào phương trình trên ta được :\(\frac{x^2+1}{x+1}=0\)

=> \(x^2+1=0\)

=> \(x^2=-1\) ( Vô lý )

Vậy phương trình vô nghiệm .

3) Ta có : \(\left|P\right|=1\)

=> \(\left|\frac{x^2+1}{x+1}\right|=1\)

=> \(\frac{x^2+1}{\left|x+1\right|}=1\)

=> \(\left|x+1\right|=x^2+1\)

TH1 : \(x+1\ge0\left(x\ge-1\right)\)

=> \(x+1=x^2+1\)

=> \(x^2=x\)

=> \(x=1\) ( TM )

TH2 : \(x+1< 0\left(x< -1\right)\)

=> \(-x-1=x^2+1\)

=> \(x^2+1+1+x=0\)

=> \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{7}{4}=0\)

=> \(\left(x+\frac{1}{2}\right)^2=-\frac{7}{4}\) ( Vô lý )

Vậy giá trị của x thỏa mãn là x = 1 .

21 tháng 6 2016

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)

\(=9\)

Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x

21 tháng 6 2016

b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)