K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Ta có: OB=OC

AB=AC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

24 tháng 9 2019

O C F A E B M P Q 1

+) Bước 1: Chứng minh \(\Delta\) FPO vuông tại P

Ta có: \(\widehat{O_1}=\widehat{FOP}=\widehat{FOE}=\widehat{FOM}+\widehat{MOE}=\frac{1}{2}\widehat{COM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{BOC}\)

=> \(\widehat{FOP}=\frac{1}{2}\widehat{BOC}\)

mà \(\widehat{FCP}=\widehat{FCB}=\frac{1}{2}\widehat{BOC}\) ( góc nội tiếp = 1/2 góc ở tâm khi chắn cùng một cung)

=> \(\widehat{FOP}=\widehat{FCP}\)

=> Tứ giác CFPO nội tiếp  => \(\widehat{FPO}+\widehat{FCO}=180^o\Rightarrow\widehat{FPO}=180^o-90^o=90^o\)

=>  \(\Delta\) FPO vuông tại P

+) Bước 2: Chứng minh  \(\Delta\) EQO vuông tại Q. ( Chứng minh tương tự)

+) Bước 3: Chứng minh tỉ số: \(\frac{PQ}{EF}=\frac{OQ}{OE}\)

Xét  \(\Delta\) FPO vuông tại P và  \(\Delta\) EQO vuông tại Q có: \(\widehat{O_1}\) chung 

=>  \(\Delta\) FPO  ~  \(\Delta\) EQO

=> \(\frac{OQ}{OE}=\frac{OP}{OF}\)

Xét  \(\Delta\) OQP và  \(\Delta\) OEF  có: \(\frac{OQ}{OE}=\frac{OP}{OF}\)( chứng minh trên ) và \(\widehat{O_1}\) chung

=>  \(\Delta\) OQP ~  \(\Delta\) OEF

=> \(\frac{PQ}{EF}=\frac{OQ}{OE}\)(1) 

+) Bước 4: Chứng minh Tỉ số \(\frac{PQ}{EF}\)không đổi khi M di chuyển trên cung nhỏ BC

Xét \(\Delta\)EQO vuông tại Q  => \(\cos\widehat{O_1}=\frac{OQ}{OE}\)

Mặt khác : \(\widehat{O_1}=\frac{1}{2}\widehat{BOC}\) ( xem chứng minh ở Bước 1) 

=> \(\cos\frac{1}{2}.\widehat{BOC}=\frac{OQ}{OE}\) (2)

Từ (1) ; (2) => \(\frac{PQ}{EF}=\cos\frac{1}{2}.\widehat{BOC}\)không đổi  khi M di chuyển. ::))