K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

tam giác OAB vuông tại B => 3 điểm O,A,B nằm trên đường tròn đường kính OA (1 )

tam giác OCA vuông tại C => 3 điểm O,A, C nằm trên đường tròn đường kính OA(2)

I là trung điểm NM => OI vuông góc với MN => tam giác OIA vuông tại I => 3 điểm O, I, A nằm trên đường tròn đường kính OA (3 )

từ 1, 2, 3 => 5 điểm A,B,I,O,Ccùng nằm trên 1 đường tròn

b) góc ABM= góc BNM (cùng chắn cung BM); góc BAN chung => tam giác BAN đồng dạng với tam giác MAB

=> AB/AN=AM/AB => AB^2=AM.AN

19 tháng 5 2018

bạn ơi còn cái ý goc AHM=ANO làm sao vậy

a: ΔOMN cân tại O có OL là đường cao

nên L là trung điểm của MN

góc ABO=góc OLA=90 độ

=>ABLO nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

hay A,B,O,C cùng thuộc một đường tròn(1)

Xét tứ giác OIAC có 

\(\widehat{OIA}+\widehat{OCA}=180^0\)

Do đó: OIAC là tứ giác nội tiếp

hay O,I,A,C cùng thuộc một đường tròn(2)

Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn

b: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA⊥BC(5)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

hay BC⊥CD(6)

Từ (5) và (6) suy ra CD//OA

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MNa) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường trònb) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC)....
Đọc tiếp

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN

a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn

b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.

c) Kẻ ME ⊥ AB (E AB), MF ⊥ AC (F AC), MK ⊥ BC (K BC). Chứng minh góc KME bằng góc KMF

d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF

e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.

 

Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.

 

0
6 tháng 6 2021

do I là trung điểm của MN

⇒I là trung trực của MN

⇒I⊥MN

⇒∠OIM=90⇔∠OIA=90

xét tứ giác ABIO có ∠OBA=∠OIA=90

⇒ABIO nội tiếp 

⇒∠BIA=∠AOB (cùng chắn \(\stackrel\frown{AB}\)(1)

xét tứ giác ACOI có ∠OIA=∠OCA=90

⇒ACOI nội tiếp

⇒∠AIC=∠AOC (cùng chắn \(\stackrel\frown{AC}\)) (2)

xét tứ giác ABOC nội tiếp đường tròn ; AB=AC

⇒∠AOB=∠AOC (chắn 2 cung = nhau) (3)

từ (1);(2);(3) ⇒∠BIA=∠AIC

⇒IA là tia phân giác ∠BIC

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC