K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc AOB=180-60=120 độ

S OAB=1/2*OA*OB*sinAOB=\(R^2\cdot\dfrac{\sqrt{3}}{4}\)

S q OAB=\(pi\cdot R^2\cdot\dfrac{120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)

=>\(Svp=R^2\left(pi\cdot\dfrac{1}{3}-\dfrac{\sqrt{3}}{4}\right)\)

 

10 tháng 4 2019

O A C B I M N J

a) Ta có I là trung điểm MN

=> OI vuông MN

Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì  AB là tiếp tuyến(O; R))

và \(\widehat{AIO}=90^o\)

=> \(\widehat{AIO}+\widehat{ABO}=180^o\)

=> Tứ giác ABOI nội tiếp  (1)

Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))

Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)

=> Tứ giác ABOC nội tiếp (2)

Như vậy A,B, C, O, I cùng nằm trên môt đường tròn

b) AB=OB  mà AB=AC; OB=OC

=> AB=AC=OB=OC

=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)

=> ABOC là hình vuông

c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:

\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)

Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận  AO là cạnh huyền

=> JA=JB=JC=JO

=> J là tâm đường tròn ngoại tiếp ABOC

như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)

Có bán kính rồi em tính diện tích và chu vi đi nhé!

17 tháng 11 2023

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều