Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)
b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)
c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)
d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
Trước hết, ta cần tính giá trị của a và b trong G và H:
$$G^2 = \frac{1}{a+b} \Rightarrow a+b = \frac{1}{G^2}$$
$$H^2 = 4a - 4\sqrt{ab} + 4b = 4(\sqrt{a} - \sqrt{b})^2 \Rightarrow \sqrt{a} - \sqrt{b} = \frac{H}{2}$$
Từ đó, suy ra được:
$$\sqrt{a} + \sqrt{b} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4}$$
$$\Rightarrow 2\sqrt{a} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H$$
$$\Rightarrow a = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H\right)^2/4$$
$$\Rightarrow b = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} - H\right)^2/4$$
Tiếp theo, ta tính giá trị của F:
$$F = 6\sqrt{3} + \sqrt{2} = 6\sqrt{3} + \sqrt{2}\frac{\sqrt{6}+\sqrt{2}}{2} = 6\sqrt{3} + 3\sqrt{2} + 3\sqrt{6}$$
Cuối cùng, ta tính giá trị của K:
$$K = 2xy\left(2\sqrt{x} + 3\sqrt{y}\right) = 2\sqrt{xy}(4\sqrt{x} + 6\sqrt{y})$$
Vậy, ta đã tính được giá trị của F, G, H và K.
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)
b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)
c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)
d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)
\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)
a) `=(\sqrt3)/(\sqrt(2a)) = (\sqrt(6a))/(2a)`
b) `=(\sqrt(3ab))/(\sqrt2) = (\sqrt(6ab))/4`
a) \(với\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}=\dfrac{2a+2a\sqrt{a}}{1-a}\)
b)\(vớia>b>0\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}=\dfrac{12a\sqrt{a}+6a\sqrt{b}}{4a-b}\)