Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
\(B=\dfrac{\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}=-2-3\sqrt{5}-5=-7-3\sqrt{5}\)
\(C=\dfrac{5\sqrt{x}-x}{2x}\)
\(D=\dfrac{\left(\sqrt{a}+1\right)\left(2\sqrt{a}+1\right)}{4a-1}\)
\(E=\dfrac{15}{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{\sqrt{15}}{\sqrt{5}-\sqrt{3}}=\dfrac{\sqrt{75}+\sqrt{45}}{2}\)
a: \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a}\cdot\sqrt{a}-\sqrt{a}}{-\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{-\left(\sqrt{a}-1\right)}=-\sqrt{a}\)
b: \(\dfrac{2+\sqrt{3}}{2-\sqrt{7}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\)
\(=\dfrac{-\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{3}\)
\(=\dfrac{-4-2\sqrt{7}-2\sqrt{3}-\sqrt{21}}{3}\)
c: \(3xy\cdot\sqrt{\dfrac{2}{xy}}=\dfrac{3xy}{\sqrt{xy}}\cdot\sqrt{2}=3\sqrt{2}\cdot\sqrt{xy}\)
d:
\(\dfrac{3}{\sqrt[3]{3}+\sqrt[3]{2}}=\dfrac{3\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}{3+2}\)
\(=\dfrac{3}{5}\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\)
e:
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5}{2-\sqrt{3}}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\left(\sqrt{3}+1\right)-\dfrac{5\left(2+\sqrt{3}\right)}{4-3}-\dfrac{6\left(3+\sqrt{3}\right)}{6}\)
\(=2\sqrt{3}+2-10-5\sqrt{3}-3-\sqrt{3}\)
\(=-4\sqrt{3}-11\)
f:
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\)
\(=\dfrac{\sqrt{5}-1}{5-1}+\dfrac{\sqrt{9}-\sqrt{5}}{9-5}+\dfrac{\sqrt{13}-\sqrt{9}}{13-9}\)
\(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-\sqrt{9}+\sqrt{13}}{4}=\dfrac{\sqrt{13}-1}{4}\)
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\\ =\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\\ =-\sqrt{a}\\ \dfrac{2+\sqrt{3}}{2-\sqrt{7}}\\ =\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\\ =\dfrac{4+2\sqrt{7}+2\sqrt{3}+\sqrt{21}}{-3}\\\)
\(3xy\sqrt{\dfrac{2}{xy}}\\ =\sqrt{\dfrac{\left(3xy\right)^2\cdot2}{xy}}\\ =\sqrt{\dfrac{9x^2y^2\cdot2}{xy}}\\ =\sqrt{9xy\cdot2}\\ =\sqrt{18xy}\)
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5\left(\sqrt{3}+2\right)}{3-4}+\dfrac{6\left(\sqrt{3}+3\right)}{3-9}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{2}-\dfrac{5\left(\sqrt{3}+2\right)}{-1}+\dfrac{6\left(\sqrt{3}+3\right)}{-6}\\ =2\sqrt{3}+2+5\sqrt{3}+10-\sqrt{3}-3\\ =6\sqrt{3}+9\)
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\\ =\dfrac{1-\sqrt{5}}{1-5}+\dfrac{\sqrt{5}-\sqrt{9}}{5-9}+\dfrac{\sqrt{9}-\sqrt{13}}{9-13}\\ =\dfrac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}}{-4}\\ =\dfrac{1-\sqrt{13}}{-4}\)
`# gvy`
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
Cách khác:
Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
câu e mình viết sai đề, mk sửa lại nhé , với mình bổ sung câu f
e) \(\dfrac{2}{\sqrt[3]{4}+\sqrt[3]{5}}\)
f) \(\dfrac{1}{2-\dfrac{\sqrt[3]{3}}{2}}\)
\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)
b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)
c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)
d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)