K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

Bạn tham khảo một bài hoàn toàn tương tự ở đây để tìm ra lời giải cho bài toán này nhé

Hỏi đáp - Trao đổi kiến thức Toán - Vật Lý - Hóa Học - Sinh Học - Học và thi online với HOC24

O
ongtho
Giáo viên
11 tháng 1 2016

Giao thoa ánh sáng đơn sắc

22 tháng 12 2019

Đáp án A

Xét tỉ số 

+ Vị trí M là vân sáng thứ 11 của bức xạ λ 1 → x M = 1 l i 1 = 11 i 2 1 , 5 = 7 , 3 i 2

+ Vị trí N là vân sáng thứ 13 của bức xạ λ 2 → x M = 13 i 2 = 11 . 1 , 5 i 1 = 16 . 5 i 1

Vậy trên đoạn MN có 28 vị trí cho vân sáng của bức xạ λ 1 và có 21 vị trí cho vân sáng của bức xạ λ 2

+ Ta xác định số vân sáng trùng nhau, mỗi vị trí trùng nhau được tính là một vân sáng. Để hai vân trùng nhau thì

Từ O đến N sẽ có 4 vị trí trùng nhau, từ O đến M sẽ có 2 vị trí trùng nhau

Số vân sáng quan sát được là 21 + 28 – 6 = 43.

23 tháng 6 2017

7 tháng 1 2019

26 tháng 12 2017

12 tháng 6 2018

Đáp án D

Phương pháp: Coi sự giao thoa trùng vân giống như giao thoa ánh sáng đơn sắc, ta đi tìm khoảng vân trùng nhau.

Cách giải:

Vị trí vân sáng và vân tối thỏa mãn điều kiện :

Vì vân sáng trùng với vị trí vân tối nên ta có:

Coi đây là hiện tượng giao thoa với khoảng vân trùng nhau là:

 

Số vân trùng nhau trong khoảng MN thỏa mãn điều kiện :

Vậy có 15 giá trị k thỏa mãn

18 tháng 5 2016

Đáp án: 23 vị trí; 0,6mm. 
Cách 1: 
- Vân sáng của i1 trùng với vân tối của i2 →2i1 = 0,6mm; i2 = 0,4; i0 = 1,2mm; 
- Ta có kM = -4,6; kN = 18,3. Số giá trị k bán nguyên là : 17,5 + 4,5 + 1 = 23 giá trị. 
Cách 2: 
+ Vân sáng của λ1 trùng với vân sáng của λ2: \(\frac{k_1}{k_2}=\frac{i_1}{i_2}=\frac{4}{3}\) 
\(\Rightarrow\) Vân sáng có tọa độ 4ki1 của λ1 trùng với vân sáng có tọa độ 3ki2của λ2 
\(\Rightarrow\) Vân sáng có tọa độ 2ki1 của λ1 trùng với vân sáng có tọa độ 1,5 ki2của λ2 (k lẻ) 
\(\Rightarrow\) xtrùng = \((k+\frac{1}{2})4i_1(mm) \Rightarrow 5,5\leq(k+\frac{1}{2})4i_1\leq 2,2.10\)

\(\Leftrightarrow{-5,08}\leq{k}\leq{17,8}\)
\(\Rightarrow\) có 23 vị trí thỏa mãn. 
Khoảng cách gần nhất từ điểm thỏa mãn đến vân trung tâm tương ứng với k = 0
xmin = 0,5.4i1 = 0,6 (mm)

12 tháng 5 2019

Phương pháp: Sử dụng lí thuyết bài toán giao thoa nhiều ánh sáng

Cách giải:

Số vân sáng của bức xạ đơn sắc 1 thu được trên màn

 

Số vân sáng của bức xạ đơn sắc 2 thu được trên màn

 

Xét sự trùng nhau của hai bức xạ

 

Số vân sáng trùng nhau của hai bức xạ là

 

Số vân sáng quan sát được trên màn là N = N1 + N2 – Ntr = 11 + 7 – 3 = 15 vân sáng

Chọn A

6 tháng 2 2018

Đáp án A

Số vân sáng của bức xạ đơn sắc 1 thu được trên màn

Số vân sáng của bức xạ đơn sắc 2 thu được trên màn

Xét sự trùng nhau của hai bức xạ

Số vân sáng trùng nhau của hai bức xạ là

Số vân sáng quan sát được trên màn là N = N1 + N2 – Ntr = 11 + 7 – 3 = 15 vân sáng