Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(d1): x+căn 3y=0
=>VTPT là \(\left(1;\sqrt{3}\right)\)
(d2): x+10=0
=>x+0y+10=0
=>VTPT là (1;0)
\(cos\left(d1;d2\right)=\left|\dfrac{1\cdot1+\sqrt{3}\cdot0}{\sqrt{1^2+3}\cdot\sqrt{1^2}}\right|=\left|\dfrac{1}{2}\right|=\dfrac{1}{2}\)
=>(d1;d2)=60 độ
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;0\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(m;-1\right)\) là 1 vtpt
Để góc giữa 2 đường thẳng bằng 45 độ
\(\Rightarrow cos\left(d_1;d_2\right)=cos45^0=\dfrac{\left|1.m-0.1\right|}{\sqrt{1^2+0^2}.\sqrt{m^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2}}=\dfrac{\left|m\right|}{\sqrt{m^2+1}}\Leftrightarrow m^2+1=2m^2\)
\(\Rightarrow m=\pm1\)
Có 2 giá trị m
Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)
\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)
\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:
\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
Ta có các vecto pháp tuyến: \(\overrightarrow{n_d}=\left(2;1\right);\overrightarrow{n_{d'}}=\left(1;3\right);\overrightarrow{n_{\Delta}}=\left(m;1\right)\)
a/ \(cos\left(d;d'\right)=\frac{\left|2.1+3.1\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+3^2}}=\frac{\sqrt{2}}{2}\Rightarrow\left(d;d'\right)=45^0\)
b/ Để \(\Delta\) cùng tạo với d 1 góc 45 độ thì \(\Delta//d'\) hoặc \(\Delta\perp d'\)
\(\Rightarrow\left[{}\begin{matrix}\frac{m}{1}=\frac{1}{3}\\1.m+3.1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{3}\\m=-3\end{matrix}\right.\)
\(\overrightarrow{n_{d1}}=\left(1;2\right)\) ; \(\overrightarrow{n_{d2}}=\left(3;m\right)\)
Ta có: cos(d1;d2) = \(\left|cos(\overrightarrow{n_{d1};}\overrightarrow{n_{d2}})\right|\) = \(\frac{\sqrt{2}}{2}\)
=> \(\frac{3+2m}{\sqrt{\left(3+m^2\right)5}}\) = \(\frac{\sqrt{2}}{2}\) ⇔ 2(3 + 2m) = \(\sqrt{10\left(3+m^2\right)}\)
=> ĐK: 3 + 2m > 0 ⇔ m > \(\frac{-3}{2}\)