K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2023

Tâm I (1;-1)

vecto IA(-3;4)

=> IA = R =\(\sqrt{3^2+4^2}=5\)

=>pt: \(\left(x-1\right)^2+\left(y+1\right)^2=25\)

6 tháng 5 2023

Gọi phương trình đường tròn \(\left(C\right):\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Gọi \(I\) là trung điểm \(AB\)

\(\Rightarrow I\left(1;-1\right)\), đồng thời \(I\) cũng là tâm đường tròn \(\left(C\right)\)

\(R=IA=\sqrt{\left(1+2\right)^2+\left(-1-3\right)^2}=5\)

\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y+1\right)^2=25\)

18 tháng 4 2021

a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)

Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)

b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)

Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)

Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)

\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)

\(\Rightarrow\Delta_1:x-y+3=0\)

Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)

NV
22 tháng 4 2021

a.

\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-1\right)^2=2\)

b.

Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)

d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)

\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)

\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)

NV
22 tháng 4 2021

c.

Gọi M là trung điểm EF

\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)

\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)

\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)

\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)

Áp dụng Pitago:

\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)

NV
30 tháng 7 2021

\(\overrightarrow{BA}=\left(2;4\right)\Rightarrow AB=\sqrt{2^2+4^2}=2\sqrt{5}\)

Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}M\left(-1;0\right)\\AM=\dfrac{AB}{2}=\sqrt{5}\end{matrix}\right.\)

Đường tròn đường kính AB có tâm M và bán kính \(R=AM\) nên có pt:

\(\left(x+1\right)^2+y^2=5\)

Tọa độ tâm I là:

x=(4-2)/2=1 và y=(-1+5)/2=2

I(1;2); A(4;-1)

\(IA=\sqrt{\left(4-1\right)^2+\left(-1-2\right)^2}=3\sqrt{2}\)

=>Phương trình đường tròn là:

(x-1)^2+(y-2)^2=18

24 tháng 2 2017

a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0

Kẻ CH ⊥ AB, (H ∈ AB)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Diện tích tam giác ABC là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

b) Viết phương trình đường tròn đường kính AB

Gọi I là trung điểm của AB

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Đường tròn đường kính AB là đường tròn tâm I bán kính IA:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

8 tháng 5 2023

\(AB\left\{{}\begin{matrix}quaA\left(-1;-3\right)\\VTCP\overrightarrow{AB}=\left(-2;8\right)\end{matrix}\right.\)

\(PTTS\) của \(AB:\left\{{}\begin{matrix}x=-1-2t\\y=-3+8t\end{matrix}\right.\)

Gọi \(I\left(x_I;y_I\right)\) là tâm đường tròn

\(I\) là trung điểm \(AB\)

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1-3}{2}=-2\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-3+5}{2}=1\end{matrix}\right.\)

\(\Rightarrow I\left(-2;1\right)\)

\(AB=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)

Mà \(R=\dfrac{AB}{2}=\dfrac{2\sqrt{17}}{2}=\sqrt{17}\)

Vậy \(PT\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=17\)

8 tháng 5 2023

Coi lại bán kính.

Câu 4:

Tọa độtâm I là;

x=(4+2)/2=3 và y=(-3+1)/2=-1

I(3;-1); A(4;-3)

IA=căn (4-3)^2+(-3+1)^2=căn 5

=>(C): (x-3)^2+(y+1)^2=5

Câu 3:

vecto AB=(2;3)

PTTS là:

x=1+2t và y=-2+3t

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{5}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)

Giao điểm của d và (C) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm

b, Gọi H là trung điểm AB.

Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)

Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)

\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)

Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)

\(\Rightarrow\widehat{HBI}=30^o\)

Khi đó: 

\(IH=d\left(I;\Delta\right)\)

\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)

\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)

\(\Leftrightarrow m=5\pm5\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)