K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

\(\overrightarrow{BC}=\left(-6;-3\right)\)

Trọng tâm của ΔABC là G(2; 1)

Khi tịnh tiến ΔABC thành ΔA'B'C' theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thì G(2;1) cũng sẽ được tịnh tiến theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thành G' (x;y)

⇒ \(\overrightarrow{GG'}=\overrightarrow{BC}\) = (-6 ; -3)

⇒ \(\left\{{}\begin{matrix}x-2=-6\\y-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\). Vậy G' (-4 ; -2)

NV
25 tháng 8 2020

\(S_{ABC}=\frac{1}{2}AB.AC=6\)

Phép vị tự biến tam giác ABC thành A'B'C' với tỉ số đồng dạng \(\left|k\right|=\sqrt{2}\)

Do đó \(S_{A'B'C'}=k^2.S_{ABC}=12\)

25 tháng 6 2017

Chọn A

Phân tích.

     - Ta thấy A thuộc đường phân giác trong góc A:x-3y+5=0 , giờ chỉ cần viết được phương trình AC là tìm được A.

     - Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.

     - Tìm M’ viết được phương trình AC t đó suy ra A. Có A, M viết được phương trình AB.

 

     - Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.

NV
23 tháng 12 2020

Hướng dẫn: 

Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)

Gọi M, M' lần lượt là trung điểm BC và B'C'

=> (GOB') là (AMB')

(CA'O') là (CA'M')

Có B'M'CM là hình bình hành

A'M'MA cũng là hbh 

Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined