K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Ta có phương trình hoành độ giao điểm là

\(\dfrac{-1}{2}x^2=x-4\)

\(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Ta có : a(2;y1); b(-4;y2). Do hai điểm a và b cùng thuộc đường thẳng d nên ta có:

\(\left\{{}\begin{matrix}y_1=x_1-4=2-4=-2\\y_2=x_2-4=-4-4=-8\end{matrix}\right.\)

Khi đó ta có:

y1+y2 -5(x1+x2)=-2-8-5(2-4)=0 ⇒đpcm

VẬY..............

6 tháng 5 2019

Theo phương trình hoành độ giao điểm:

\(x+1-m=-x^2\)

\(\Leftrightarrow x^2+x+1-m=0\)

Phương trình cần 2 nghiệm phân biệt:

\(\Rightarrow\Delta>0\)

\(\Leftrightarrow1^2-4\left(1-m\right)>0\)

\(\Leftrightarrow4m-3>0\)

\(\Leftrightarrow m>\frac{3}{4}\)

Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=1-m\end{matrix}\right.\)

\(y_1=x_1+1-m\)

\(y_2=x_2+1-m\)

\(x_1+1-m-\left(x_2+1-m\right)=x_1^2-x_2^2+1\)

\(\Leftrightarrow x_1-x_2=x^2_1-x^2_2+1\)

Vậy với \(m>\frac{3}{4}\)thõa mản điều kiện ban đầu (?)

20 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)

28 tháng 2 2019

M ở giữa ?

1/ Xét tam giác AMB và tam giác DMC :

AM= D M ( gt)

CM=BM ( gt)

\(\widehat{DMC}=\widehat{AMB}\)

=> \(\Delta AMB=\Delta DMC\)

2/

Từ cặp tam giác trên bằng nhau

=> \(\widehat{ABM}=\widehat{DCM}\)

Mà 2 góc này so le trong

=> \(AB\) // CD

=> \(AC\perp CD\Rightarrow\Delta ACD\) vuông

Xét hai tam giác ABC và CAD , có

CD = AB ( do tam giác AMB = DMC )
AC chung (gt)

góc ACD = góc CAB = 90 độ

=> Tam giác ABC = tam giác CAD ( trường hợp hai cạnh góc vuông )

20 tháng 8 2017

a. Xét \(\Delta ABC\) có: \(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)

\(\Rightarrow\widehat{ABC}=180^o-\widehat{ACB}-\widehat{BAC}=180^o-65^o-90^o=25^o\)

Trong \(\Delta ABC\) có: \(\widehat{ACB}=65^o;\widehat{ABC}=25^o\)

\(\Rightarrow\widehat{ACB}>\widehat{ABC}\)

\(\Rightarrow AB>AC\)

b. Xét \(\Delta ABH\)\(\Delta EBH\) có:

BH chung

\(\widehat{AHB}=\widehat{EHB}\left(=90^o\right)\)

\(HA=HE\left(GT\right)\)

\(\Rightarrow\Delta ABH=\Delta EBH\left(c.g.c\right)\)

c. Xét \(\Delta BAC\)\(\Delta BEC\) có:

\(BA=BE\left(\Delta BAC=\Delta BEHC\right)\)

\(\widehat{ABH}=\widehat{EBH}\left(\Delta BAC=\Delta BEC\right)\)

BC chung

\(\Rightarrow\Delta BAC=\Delta BEC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^o\)

\(\Rightarrow\Delta BEC\) vuông tại E

20 tháng 8 2017

Câu d) để mk suy nghĩ đã