Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ACx}=180^0-40^0=140^0\)
\(\widehat{xCy}=\widehat{yCA}=\dfrac{140^0}{2}=70^0\)
b: Ta có: \(\widehat{yCA}=\widehat{CAB}\)
mà hai góc này ở vị trí so le trong
nên AB//Cy
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=3\sqrt{3}\)
\(cosB=\frac{AB^2+BC^2-AC^2}{2AB.BC}=0\Rightarrow B=90^0\)
\(\Rightarrow C=30^0\)
\(BD=\frac{1}{3}BC=\sqrt{3}\)
Đặt \(AE=x\Rightarrow\left\{{}\begin{matrix}x+BE=AB=3\\BD^2+BE^2=x^2\end{matrix}\right.\)
\(\Rightarrow3+\left(3-x\right)^2=x^2\Leftrightarrow12-6x=0\Rightarrow x=2\)
\(\Rightarrow BE=3-x=1\)
\(\Rightarrow CE=\sqrt{BE^2+BC^2}=\sqrt{1+27}=2\sqrt{7}\)
\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
A C B 35 H
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).
Áp dụng định lý cô sin trong tam giác ABC:
\(c^2=a^2+b^2-2abcosC=7^2+23^2-2.7.23.cos130\)\(\cong784cm\).
Vậy \(c=28cm.\)
\(cosA=\dfrac{c^2+b^2-a^2}{2bc}=\dfrac{28^2+23^2-7^2}{2.23.28}=\dfrac{158}{161}\).
\(\Rightarrow\widehat{A}\cong11^o\).
\(\widehat{B}=180^o-\left(\widehat{A}+\widehat{C}\right)=180^o-\left(130^o+11^o\right)=39^o\).
a: Vì góc xOt>góc xOy
nên tia Ot không nằm giữa hai tia Ox và Oy
b: Vì góc tOx<góc tOy
nên tia Ot không nằm giữa hai tia Ox và Oy
c: Vì góc xOt=góc tOy
nên tia Ot nằm giữa hai tia Ox và Oy
Bổ sung đề: \(\widehat{ACE}=\widehat{BAC}\)
a: ta có: \(\widehat{ACE}=\widehat{BAC}\)
mà hai góc này ở vị trí so le trong
nên AB//CE
b: \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}\)
\(\widehat{ACM}=\dfrac{\widehat{ACE}}{2}\)
mà \(\widehat{BAC}=\widehat{ACE}\)
nên \(\widehat{DAC}=\widehat{ACM}\)
màhai góc này ở vị trí so le trong
nên AD//CM
Bài 1:
a) Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=2:3:4\)
⇒\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)
Ta có: \(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^0}{9}=20^0\)
Do đó, ta được
\(\left\{{}\begin{matrix}\frac{\widehat{A}}{2}=20^0\\\frac{\widehat{B}}{3}=20^0\\\frac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=20^0\cdot2=40^0\\\widehat{B}=20^0\cdot3=60^0\\\widehat{C}=20^0\cdot4=80^0\end{matrix}\right.\)
Vậy: \(\widehat{A}=40^0\); \(\widehat{B}=60^0\); \(\widehat{C}=80^0\)
Bài 2:
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD là cạnh chung
\(\widehat{ABD}=\widehat{EBD}\)(do BD là tia phân giác của \(\widehat{EBA}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
⇒AB=EB(hai cạnh tương ứng)
Xét ΔAEB có AB=EB(cmt)
nên ΔAEB cân tại B(định nghĩa tam giác cân)
Xét ΔAEB cân tại B có \(\widehat{EBA}=60^0\)(gt)
nên ΔAEB đều(dấu hiệu nhận biết tam giác đều)
c) Ta có: ΔABC vuông tại A(gt)
mà \(\widehat{C}=30^0\)
nên \(AB=\frac{BC}{2}\)(trong một tam giác vuông, cạnh đối diện với góc 300 thì bằng nửa cạnh huyền)
hay BC=2AB=2*5=10cm
Vậy: BC=10cm
Bài 3:
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\frac{BC}{2}\)(gt)
Do đó: ΔABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=90^0-\widehat{C}=90^0-15^0=75^0\)
Vậy: \(\widehat{B}=75^0\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{18^2+20^2-14^2}{2.18.20}=\dfrac{11}{15}\).
Vậy \(\widehat{A}=42^o50'\).
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{14^2+20^2-18^2}{2.14.20}=\dfrac{17}{20}\).
Vậy \(\widehat{B}=60^o56'\).
Vậy \(\widehat{C}=180^o-\widehat{A}-\widehat{B}=77^o46'\).