Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý cô sin trong tam giác ABC:
\(c^2=a^2+b^2-2abcosC=7^2+23^2-2.7.23.cos130\)\(\cong784cm\).
Vậy \(c=28cm.\)
\(cosA=\dfrac{c^2+b^2-a^2}{2bc}=\dfrac{28^2+23^2-7^2}{2.23.28}=\dfrac{158}{161}\).
\(\Rightarrow\widehat{A}\cong11^o\).
\(\widehat{B}=180^o-\left(\widehat{A}+\widehat{C}\right)=180^o-\left(130^o+11^o\right)=39^o\).
Có: \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-60^0-40^0=80^0\)
Áp dụng định lý hàm số sin ta có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
=> \(\left\{{}\begin{matrix}\dfrac{a}{sin60^0}=\dfrac{14}{sin80^0}\\\dfrac{b}{sin40^0}=\dfrac{14}{sin80^0}\end{matrix}\right.\)
Suy ra \(\left\{{}\begin{matrix}a\approx12.31\\b\approx9.14\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{18^2+20^2-14^2}{2.18.20}=\dfrac{11}{15}\).
Vậy \(\widehat{A}=42^o50'\).
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{14^2+20^2-18^2}{2.14.20}=\dfrac{17}{20}\).
Vậy \(\widehat{B}=60^o56'\).
Vậy \(\widehat{C}=180^o-\widehat{A}-\widehat{B}=77^o46'\).
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)
* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)
* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)
a: \(\widehat{ACx}=180^0-40^0=140^0\)
\(\widehat{xCy}=\widehat{yCA}=\dfrac{140^0}{2}=70^0\)
b: Ta có: \(\widehat{yCA}=\widehat{CAB}\)
mà hai góc này ở vị trí so le trong
nên AB//Cy
\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
A C B 35 H
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).