Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M là trung điểm của đoạn thẳng AB, áp dụng tính chất trung điểm ta có:
\(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)
b) G là trọng tâm của tam giác ABC, áp dụng tính chất trọng tâm của tam giác ta có:
\(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)
c) Ta có \(\overrightarrow {OA} = \left( {{x_A};{y_A}} \right),\overrightarrow {OB} = \left( {{x_B};{y_B}} \right),\overrightarrow {OC} = \left( {{x_C};{y_C}} \right)\)
Suy ra:
\(\begin{array}{l}\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \frac{1}{2}\left[ {\left( {{x_A};{y_A}} \right) + \left( {{x_B};{y_B}} \right)} \right]\\ = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\end{array}\)
\(\begin{array}{l}
\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) = \frac{1}{3}\left[ {\left( {{x_A};{y_A}} \right) + \left( {{x_B};{y_B}} \right) + \left( {{x_c};{y_c}} \right)} \right]\\
= \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)
\end{array}\)
Mà ta có tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ điểm M, nên ta có
Tọa độ điểm M là \(\left( {{x_M};{y_M}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
Tọa độ điểm G là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)
AB=căn 5
AB: (x-1)/1=(y-3)/-2
=>2x+y-5=0
M thuộc Δ nên M(m;2-m)
\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)
\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)
=>|m-3|=8
=>m=11(nhận) hoặc m=-5(loại)
=>M(11;-9)
=>3a+5b=3*11+5*(-9)=-12
Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)
Tọa độ của C là (x; 2). Ta có: = (-2 - x; -1)
= (-2 - x; -3)
Tam giác ABC vuông tại C => ⊥ => . = 0
=> (-2 - x)(2 - x) + (-1)(-3) = 0
=> -4 + x2+ 3 = 0
=> x2 = 1 => x= 1 hoặc x= -1
Ta được hai điểm C1(1; 2); C2(-1; 2)
a) Ta có: \(\overrightarrow {OM} = \left( {2;1} \right),\overrightarrow {MN} = \left( { - 3;2} \right),\overrightarrow {MP} = \left( {2;1} \right)\)
b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP} = - 3.2 + 2.1 = - 4\)
c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
d) Ta có: \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)
e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)
Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)
\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).
\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\) mà \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương nên ta có:
\(\left\{ \begin{array}{l}{x_0} - x = {u_1}\\{y_0} - y = {u_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - {u_1}\\y = {y_0} - {u_2}\end{array} \right.\)
Vậy \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)
Do M nằm trên đoạn AB nên \(\overrightarrow{AM}=-3\overrightarrow{BM}\)
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-6;y-5\right)\end{matrix}\right.\)
\(\overrightarrow{AM}=-3\overrightarrow{BM}\Leftrightarrow\left\{{}\begin{matrix}x-2=-3\left(x-6\right)\\y-1=-3\left(y-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) \(\Rightarrow M=\left(5;4\right)\)