Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình BC có \(\overrightarrow{n}\) (8;6) là: 4x + 3y - 8 =0
Phương trình đường cao AA' ⊥ BC và qua A là: -3x + 4y + 11 = 0
a,Vuông tại A mới đúng
\(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)
\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)
c, \(D\left(0;y_0\right)\)
\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)
\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)
A đúng, trục hoành nhận mọi vecto có dạng \(\left(0;k\right)\) với \(k\ne0\) là vtpt
E là điểm nào bạn?
Do F thuộc Oy, gọi tọa độ F có dạng \(F\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AF}=\left(4;y-1\right)\\\overrightarrow{CF}=\left(-3;y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AF^2=16+\left(y-1\right)^2\\CF^2=9+\left(y+2\right)^2\end{matrix}\right.\)
ACF cân tại F \(\Rightarrow AF^2=CF^2\)
\(\Rightarrow16+\left(y-1\right)^2=9+\left(y+2\right)^2\)
\(\Leftrightarrow17+y^2-2y=13+y^2+4y\)
\(\Rightarrow6y=4\Rightarrow y=\dfrac{2}{3}\)
\(\Rightarrow F\left(0;\dfrac{2}{3}\right)\)
\(\overrightarrow{a}.\overrightarrow{b}=4.3+1.2=14\)
\(\overrightarrow{a}.\overrightarrow{b}=5.\left(-3\right)+1.0=-15\)
\(\overrightarrow{a}.\overrightarrow{b}=7.1+3.\left(-5\right)=-8\)
Ta có \(\overrightarrow {BC} = \left( { - 5; - 1} \right)\), suy ra \(BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {26} \), đồng thời \(\overrightarrow {{n_{BC}}} = \left( {1; - 5} \right)\).
Mặt khác BC đi qua điểm B(3;5) nên phương trình BC là \(x - 5y + 22 = 0\)
Độ dài đường cao AH của tam giác ABC là \(AH = d\left( {A,BC} \right) = \frac{{\left| {1 - 5\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{28}}{{\sqrt {26} }}\)
Diện tích của tam giác ABC là \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{28}}{{\sqrt {26} }}.\sqrt {26} = 14\)
AB=(3;-1)
AC=(4;2)
AB.AC= |AB|.|AC|.cos(AB,AC)
cos( AB,AC)= \(\dfrac{10}{\sqrt{10}.2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
BAC=45