K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2020

\(\overrightarrow{a}.\overrightarrow{b}=4.3+1.2=14\)

\(\overrightarrow{a}.\overrightarrow{b}=5.\left(-3\right)+1.0=-15\)

\(\overrightarrow{a}.\overrightarrow{b}=7.1+3.\left(-5\right)=-8\)

28 tháng 8 2019

Giải bài 4 trang 62 sgk Hình học 10 | Để học tốt Toán 10

9 tháng 5 2017

Từ giả thiết suy ra a → = 4 ; 6  và  b → = 3 ; − 7 .

Suy ra  a → . b → = 4.3 + 6. − 7 = − 30.

 Chọn A.

25 tháng 9 2018

Ta có A B → = − 1 ; 11 ,   A C → = − 7 ; 3 .

Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.  

Chọn A.

18 tháng 7 2018

Ta có A B → = − 1 ; 11 ,   A C → = − 7 ; 3 .

Suy ra   A B → . A C → = − 1 . − 7 + 11.3 = 40.

Chọn A.

19 tháng 8 2018

Chọn A.

30 tháng 3 2017

\(\overrightarrow{a}\) . \(\overrightarrow{b}\) = ( -3) . 2 + 1.2 = -4

30 tháng 3 2017

Giải bài 4 trang 62 sgk Hình học 10 | Để học tốt Toán 10

22 tháng 4 2018

Đáp án B

a → . b → = 3.4 + − 1 .14 =   − 2

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có:  \(\overrightarrow {OM}  = \left( {2;1} \right),\overrightarrow {MN}  = \left( { - 3;2} \right),\overrightarrow {MP}  = \left( {2;1} \right)\)

b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP}  =  - 3.2 + 2.1 =  - 4\)

c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

d) Ta có:  \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)

e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)

Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)