Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Phương pháp: Đường thẳng nằm trong mặt phẳng nếu hai điểm phân biệt của đường thẳng nằm trên mặt phẳng.
Đáp án B
Vì mà
Vì M là hình chiếu vuông góc của I trên ∆
Khi đó
Vậy M(5; - 2; - 5) hoặc M(5; - 8;1) → bc=10
Gọi n ( a,b,c ) là VTPT của (Q)
⇒ n a , b , c . u 2 ; 1 ; - 1 = 0 ⇔ 2 a + b - c = 0 ⇒ c = 2 a + b
Khi đó góc α giữa hai mặt phẳng (P) và (Q) nhỏ nhất khi lớn nhất với
là VTPT của ta có
cos α = n . n ' → n → . n ' → = 2 z - b + 2 c 3 a 2 + b 2 + c 2 = 6 a + b 3 5 a 2 + 4 a b + 2 b 2
⇒ P 2 = 36 a 2 + 12 a b + b 2 9 5 a 2 + 4 a + 2 b 2 = 36 t 2 + 12 t + 1 9 5 a 2 + 4 a + 2 b 2
Xét hàm số
f t = 36 t 2 + 12 t + 1 9 5 a 2 + 4 a + 2 b 2 ⇒ f ' t = 2 42 t 2 + 67 t + 10 9 5 a 2 + 4 a + 2 b 2 = 0 ⇔ t = - 1 6 t = - 10 7
Vậy GTLN của P = f - 10 7 = 53 54 = 0 , 99
⇒ α = 8 o
Đáp án cần chọn là B
Đáp án A
Phương pháp:
Đánh giá, tìm vị trí của Δ để khoảng cách giữa 2 đường thẳng là lớn nhất.
Cách giải:
Kẻ AH vuông góc d, qua A kẻ d ' / / d .
Dựng mặt phẳng (Q) chứa d’ và vuông góc AH, (Q) cắt (P) tại Δ 0 . Ta sẽ chứng minh Δ 0 thỏa mãn yêu cầu đề bài (cách d một khoảng cách lớn nhất).
Vì A H ⊥ d A H ⊥ Q ⇒ d / / Q ⇒ d d ; Q = A H = d d ; Δ 0
(do Δ 0 ⊂ Q )
Lấy Δ là đường thẳng bất kì qua A và nằm trong (P). Gọi (Q’) là mặt phẳng chứa d’ và
Δ ⇒ d / / Q '
⇒ d d ; Q ' = d H ; Q '
Kẻ
H A ' ⊥ Q ' , A ' ∈ Q ' ⇒ d d ; Q ' = H A ' = d d ; Δ .
Ta có: H A ' ≤ H A ⇒ Khoảng cách từng d đến Δ lớn nhất bằng AH khi Δ trùng Δ 0.
*) Tìm tọa độ điểm H:
Gọi α : mặt phẳng qua A vuông góc d
⇒ α : 2. x − 1 − 1 y − 3 + 1 z − 1 = 0 ⇔ 2 x − y + z = 0
H = d ∩ α ⇒ x − 1 2 = y + 1 − 1 = z − 3 1 = 2 x − 2 − y − 1 + z − 3 4 + 1 + 1 = 2 x − y + z − 6 6 = 0 − 6 6 = − 1
⇒ x = − 1 y = 0 z = 2 ⇒ H − 1 ; 0 ; 2
⇒ A H → − 2 ; − 3 ; 1
Δ 0 có 1 VTCP: u → = A H → ; n P → , với n P → = 1 ; 1 ; − 4
⇒ u → = 11 ; − 7 ; 1 ⇒ a = 11 ; b = − 7 ⇒ a + 2 b = − 3.
Đáp án là D