Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay tọa độ điểm A và B vào vế trái của phương trình mặt phẳng (P) ta có:
1+ (-3)+0-1=-3<0 và 5+ (-1)+ (-2)-1=1>0
Nên suy ra A và B nằm khác phía so với mặt phẳng (P).
Gọi là điểm đối xứng với B qua (P). Ta có:
|MA – MB| = |MA – MB’| ≤ AB’.
Do đó |MA – MB| lớn nhất là bằng AB' khi và chỉ khi M là giao điểm của đường thẳng AB' với mặt phẳng (P).
Ta có nên đường thẳng AB' có véc-tơ chỉ phương . Phương trình đường thẳng AB' là
Tọa độ điểm M là nghiệm hệ
Như vậy M (6;-1;-4) => abc = 6 (-1).(-4) = 24.
Đáp án D
Mặt phẳng cần tìm sẽ vuông góc với (ABM). Một vecto pháp tuyến của nó là tích có hướng của vecto pháp tuyến mặt phẳng (ABM) và A B →
Cũng có thể làm như sau: Khoảng cách lớn nhất là MH với H là hình chiếu vuông góc của M lên đường thẳng AB. Ta tìm được H(3;-3;-10)
Chọn A
Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).
Suy ra (Q):2x+y+z-3=0.
Do Δ // (P) nên Δ ⊂ (Q)).
D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).
Gọi d là đường thẳng đi qua N và vuông góc (P),
Ta có N’ ∈ d => N' (-4+2t;2+t;1+t); N’ ∈ (Q) => t = 4/3
cùng phương
Do |a|, |b| nguyên tố cùng nhau nên chọn
Vậy |a| + |b| + |c| = 15.
Chọn B
Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B
Đáp án A.