Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép vị tự tâm I(1; 2) tỉ số k = 5 biến điểm M(2; -3) thành điểm M’(x; y)
⇔ I M ' → = 5 I M → ⇔ x − 1 = 5 2 − 1 y − 2 = 5 − 3 − 2 ⇔ x = 6 y = − 23
Suy ra M’(6; -23).
Đáp án C
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C= (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
Gọi \(I\left(a;b\right)\)
Theo công thức tọa độ phép vị tự:
\(\left\{{}\begin{matrix}0-a=3\left(-4-a\right)\\4-b=3\left(2-b\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-a=-12-3a\\4-b=6-3b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-6\\b=1\end{matrix}\right.\) \(\Rightarrow I\left(-6;1\right)\)
Gọi G' là trọng tâm tam giác A'B'C' thì G' là ảnh của G qua phép vị tự tâm I tỉ số k
Do G' thuộc trục hoàn nên tọa độ có dạng \(G'\left(a;0\right)\)
Áp dụng công thức tọa độ phép vị tự:
\(\left\{{}\begin{matrix}a-1=k\left(4-1\right)\\0+1=k\left(2+1\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3k+1\\k=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow S_{A'B'C'}=\left|k\right|.S_{ABC}=\frac{1}{3}.36=12\)
Đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R=4\)
Do tâm vị tự trùng tâm đường tròn (tọa độ giống nhau)
\(\Rightarrow\) (C') là đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R'=\left|k\right|.R=4\left|k\right|\)
Phương trình (C'):
\(\left(x-1\right)^2+\left(y+1\right)^2=16k^2\)
Do (C') qua M nên:
\(\left(4-1\right)^2+\left(3+1\right)^2=16k^2\)
\(\Rightarrow k^2=\frac{25}{16}\Rightarrow k=\pm\frac{5}{4}\)
I M ' → = − 1 2 I M → ⇔ x − 0 = − 1 2 . ( 12 − 0 ) = − 6 y − 2 = − 1 2 ( − 3 − 2 ) = 5 2 ⇒ x = − 6 y = 9 2
Đáp án B
\(\overrightarrow{AB}=\left(-4;2\right)\)
Gọi \(\overrightarrow{A'B'}=\left(a;b\right)\) , do A' là ảnh của A, B' là ảnh của B trong cùng phép vị tự nên \(\overrightarrow{A'B'}\) cũng là ảnh của \(\overrightarrow{AB}\) qua phép vị tự đó
\(\Rightarrow\left\{{}\begin{matrix}a-1=4\left(-4-1\right)\\b-1=4\left(2-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-19\\b=5\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{A'B'}=\left(-19;5\right)\)