Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1\dfrac{5}{7}=\dfrac{12}{7}=\dfrac{24}{14},1\dfrac{6}{7}=\dfrac{13}{7}=\dfrac{26}{14}\)
Gọi SPT là : x
Ta có : \(\dfrac{24}{14}< x< \dfrac{26}{14}\\ x=\dfrac{25}{14}\)
b) Gọi SPT là : x
\(\dfrac{1}{3}< x< \dfrac{2}{3}\\=> \dfrac{5}{15}< x< \dfrac{10}{15}\\ =>x\in\left\{\dfrac{6}{15};\dfrac{7}{15};\dfrac{8}{15};\dfrac{9}{15}\right\}\)
a,\(\dfrac{5}{7}\) = \(\dfrac{1\times7+5}{7}=\dfrac{12}{7}\) = \(\dfrac{12\times2}{7\times2}\)=\(\dfrac{24}{14}\)
1\(\dfrac{6}{7}\)=\(\dfrac{1\times7+6}{7}=\dfrac{13}{7}\)= \(\dfrac{13\times2}{7\times2}\) = \(\dfrac{26}{14}\)
Phân số lớn hơn 1\(\dfrac{5}{4}\) và bé hơn 1\(\dfrac{6}{7}\) là phân số nằm giữa hai phân số
\(\dfrac{24}{14}\) và \(\dfrac{26}{14}\) đó là phân số \(\dfrac{25}{14}\)
b, \(\dfrac{1}{3}=\dfrac{1\times3}{3\times3}\) = \(\dfrac{3}{9}\); \(\dfrac{2}{3}\) = \(\dfrac{2\times3}{3\times3}\) = \(\dfrac{6}{9}\)
Hai phân số lớn hơn \(\dfrac{1}{3}\) và bé hơn \(\dfrac{2}{3}\) là hai phân số nằm giữa hai phân số \(\dfrac{3}{9}\) và \(\dfrac{6}{9}\) lần lượt là: \(\dfrac{4}{9}\) và \(\dfrac{5}{9}\)
ta có bốn phân số trên sắp xếp theo thứ tự tăng dần là:
\(\dfrac{3}{9};\) \(\dfrac{4}{9}\); \(\dfrac{5}{9}\); \(\dfrac{6}{9}\) và 4 phân số đều có tử số là các số tự nhiên liến tiếp.
Vậy hai phân số thỏa mãn đề bài là: \(\dfrac{4}{9}\); \(\dfrac{5}{9}\)
Đáp số: a, \(\dfrac{25}{14}\); b, \(\dfrac{4}{9}\); \(\dfrac{5}{9}\)
a) Gọi phân số cần tìm có dạng là \(\dfrac{a}{12}\)
Theo đề, ta có: \(\dfrac{-2}{3}< \dfrac{a}{12}< \dfrac{-1}{4}\)
\(\Leftrightarrow\dfrac{-8}{12}< \dfrac{a}{12}< \dfrac{-3}{12}\)
\(\Leftrightarrow-8< a< -3\)
\(\Leftrightarrow a\in\left\{-7;-6;-5;-4\right\}\)
Vậy: Các phân số cần tìm là \(\dfrac{-7}{12};\dfrac{-6}{12};\dfrac{-5}{12};\dfrac{-4}{12}\)
b) Gọi phân số cần tìm có dạng là \(\dfrac{15}{a}\left(a\ne0\right)\)
Theo đề, ta có: \(\dfrac{3}{7}< \dfrac{15}{a}< \dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{15}{35}< \dfrac{15}{a}< \dfrac{15}{24}\)
Vậy: Các phân số cần tìm là \(\dfrac{15}{34};\dfrac{15}{33};...;\dfrac{15}{25}\)
Chọn đáp án C