Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)
b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)
\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)
a) \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)=P\left(A\right)+P\left(B\right)-P\left(A\right)P\left(B\right)\)
\(=0,6+0,3-0,18=0,72\)
b) \(P\left(\overline{A}\cup\overline{B}\right)=1-P\left(AB\right)=1-0,18=0,82\)
Số kết quả thuận lợi cho biến cố \(A \cup B\) là \(5 + 12 = 17\).
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{n\left( \Omega \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega\right)}} = \frac{{12}}{{n\left( \Omega\right)}};P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega\right)}} = \frac{{17}}{{n\left( \Omega\right)}}\)
\( \Rightarrow P\left( A \right) + P\left( B \right) = P\left( {A \cup B} \right)\)
tham khảo
a)\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right).\)
Suy ra \(P\left(AB\right)=0,4\)
\(P\left(\overline{A}B\right)=P\left(B\right)-P\left(AB\right)=0,7-0,4=0,3\)
\(P\left(\overline{A}\overline{B}\right)=1-P\left(A\cup B\right)=0,2\)
b) Vì \(P\left(AB\right)\ne P\left(A\right).P\left(B\right)\) nên A và B không độc lập.
A, B là hai biến cố độc lập. P(A) =0,5.\(P\left(A\cap B\right)=0,2\). Tính \(P\left(A\cup B\right)\)
\(P\left(B\right)=\dfrac{P\left(A\cap B\right)}{P\left(A\right)}=0,4\)
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right)=0,7\)
\(AB = \left\{ {\left( {6;6} \right)} \right\},n\left( {AB} \right) = 1,n\left( \Omega\right) = 36 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{1}{{36}}\)
\(P\left( A \right) = \frac{1}{6},P\left( B \right) = \frac{1}{6} \Rightarrow P\left( A \right)P\left( B \right) = \frac{1}{{36}}\)
Vậy \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
a) Vì \(P\left(A\cap B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)\) nên
\(\dfrac{P\left(A\cap B\right)}{P\left(A\right)+P\left(B\right)}=\dfrac{P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)}{P\left(A\right)+P\left(B\right)}=1-a\)
Không gian mẫu \(\Omega \) là tập hợp gồm các phần tử \(\left\{ {1;2;3;4;5;6} \right\}\)
\(\begin{array}{l}P\left( A \right) = \frac{2}{6} = \frac{1}{3}\\P\left( B \right) = \frac{1}{6}\end{array}\)
Vì \(A \cup B = \left\{ {3;4;6} \right\} \Rightarrow P\left( {A \cup B} \right) = \frac{3}{6} = \frac{1}{2}\)