Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không thể chắc chắn bạn Sơn rút được phiếu câu hỏi số 2
b) Có 20 kết quả xảy ra
Không chắc chắn bạn Sơn rút được phiếu câu hỏi mình mong muốn.
Có 4 cách chọn thẻ thứ nhất. có 3 cách chọn thẻ thứ hai số cách chọn 2 tấm thẻ khác nhau từ 4 tấm thẻ là:
4 x 3 = 12 (cách)
Theo cách tính trên mỗi cách đã được tính hai lần. Vậy số cách lấy được 2 tấm thẻ từ bốn tấm thẻ đã cho là:
12 : 2 = 6 (cách)
Có 2 cách chọn tấm thẻ thứ nhất, có 3 cách chọn thẻ thứ hai. Vậy số cách chọn hai tấm thẻ để tích các số trên hai thẻ rút ra là số chẵn" là:
2 x 3 = 6 (cách)
Theo cách tính trên mỗi cách đã được tính hai lần.
Vậy số cách để rút hai tấm thẻ mà tích các số trên hai thẻ là số chẵn là:
6 : 2 = 3 (cách)
Xác suất của biến cố "tích các số trên hai thẻ rút ra là số chẵn" là:
3 : 6 = \(\dfrac{1}{2}\)
Kết luận:...
Cách thứ hai: Số cách chọn 2 thẻ bất kì (có kể thứ tự) là \(4.3=12\) cách. Như vậy, số cách chọn 2 thẻ không tính thứ tự là \(\dfrac{12}{2}=6\) cách.
Ta xét biến cố A: "Tích 2 số trên 2 thẻ rút ra là số chẵn." Biến cố đối của nó là \(\overline{A}\): "Tích 2 số trên 2 thẻ rút ra là số lẻ." Biến cố này tương đương với biến cố: "Cả 2 số trên 2 thẻ rút được là số lẻ."
Ta thấy trường hợp duy nhất thỏa mãn là rút được 2 tấm thẻ số 5 và 7. \(\Rightarrow P\left(\overline{A}\right)=\dfrac{1}{6}\) \(\Rightarrow P\left(A\right)=\dfrac{5}{6}\)
Vậy xác suất của biến cố: "Tích các số trên 2 thẻ rút ra là số chẵn." là \(\dfrac{5}{6}\).
Khi lấy 1 tấm thẻ ra khỏi hộp thì số chỉ trên tấm thẻ có thể là: thẻ 3; thẻ 4; thẻ 5; thẻ 6; thẻ 7; thẻ 8; thẻ 9; thẻ 10; thẻ 11; thẻ 12.
Các kết quả cho biến cố \(A\): “ Số ghi trên thẻ lấy ra chia hết cho 3” là thẻ 3; thẻ 3; thẻ 9; thẻ 12.
Các kết quả cho biến cố \(B\): “ Số ghi trên thẻ lấy ra chia hết cho 6” là thẻ 6; thẻ 12.
a) Các kết quả có thể của hành động trên là: 11; 12; 13; 14; 15; 16; 17; 18; 19; 20.
b) Kết quả thuận lợi của biến cố E là: 12; 15; 18
Kết quả thuận lợi của biến cố F là: 11; 13; 17; 19
Vì 5 quả bóng có kích thước và khối lượng giống nhau nên 5 kết quả của phép thử có khả năng xảy ra bằng nhau.
- Biến cố \(A\) xảy ra khi ta lấy được quả bóng có số 5 hoặc 13 nên có 2 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:
\(P\left( A \right) = \frac{2}{5}\).
- Vì không có quả bóng nào đánh số chia hết cho 3 nên số kết quả thuận lợi của biến cố \(B\) là 0. Xác suất của biến cố \(B\) là
\(P\left( B \right) = \frac{0}{5} = 0\).
- Vì cả 5 quả bóng đều đánh số lớn hơn 4 nên số kết quả thuận lợi của biến cố \(C\) là 5. Xác suất của biến cố \(C\) là
\(P\left( C \right) = \frac{5}{5} = 1\).
Kết quả để biến cố E xảy ra khi Sơn rút được phiếu câu hỏi từ số 1 đến số 4