Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không thể chắc chắn bạn Sơn rút được phiếu câu hỏi số 2
b) Có 20 kết quả xảy ra
Kết quả để biến cố E xảy ra khi Sơn rút được phiếu câu hỏi từ số 1 đến số 4
Vì gặp ngẫu nhiên một người trong 200 người nên 200 kết quả có khả năng xảy ra như nhau.
Số người làm Kinh doanh trong 200 người ở khu phố là:
\(200.24\% = 48\) (người)
Số người làm Y tế trong 200 người ở khu phố là:
\(200.12\% = 24\) (người)
Số người làm Giáo dục trong 200 người ở khu phố là:
\(200.10\% = 20\) (người)
Số người làm Sản xuất trong 200 người ở khu phố là:
\(200.30\% = 60\) (người)
Số người làm Dịch vụ trong 200 người ở khu phố là:
\(200.24\% = 48\) (người)
a) Gọi \(A\) là biến cố người gặp ngẫu nhiên là người làm trong lĩnh vực giáo dục.
Biến cố \(A\) xảy ra khi người gặp ngẫu nhiên là người làm trong lĩnh vực giáo dục do đó, số kết quả thuận lợi của biến cố \(A\) là 20. Xác suất của biến cố \(A\) là:
\(P\left( A \right) = \frac{{20}}{{200}} = \frac{1}{{10}}\)
b) Gọi \(B\) là biến cố người gặp ngẫu nhiên không thuộc lĩnh vực Y tế hay Dịch vụ do đó, người gặp ngẫu nhiên có thể thuộc lĩnh vực Kinh doanh, Giáo dục hoặc Sản xuất.
Biến cố \(B\) xảy ra khi người gặp ngẫu nhiên là người làm trong lĩnh vực Kinh doanh, Giáo dục hoặc Sản xuất do đó, số kết quả thuận lợi của biến cố \(B\) là: 48 + 20 + 60 = 128.
Xác suất của biến cố \(B\) là:
\(P\left( B \right) = \frac{{128}}{{200}} = \frac{{16}}{{25}}\).
Gọi x là số câu hỏi được trả lời đúng ở vòng sơ tuyển (x nguyên dương)
Số câu hỏi trả lời sai: 10 – x
Số điểm người dự thi đạt được: 10 + 5x – (10 -x)
Người dự thi muốn thi tiếp vòng sau thì 10 + 5x – (10 -x) ≥ 40
⇔ 6x ≥ 40 ⇔ x ≥ 20/3. Do x nguyên dương nên x ∈ {7;8;9;10}
Không chắc chắn bạn Sơn rút được phiếu câu hỏi mình mong muốn.