K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

a/

Xét tg ABO có

AB=AO=R => tg ABO cân tại A

\(AH\perp OB\) => AH là đường cao của ABO

=> AH là đường trung trực của tg ABO (trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung trực của cạnh đáy )

\(\Rightarrow HB=HO\)(1)

Xét tg AOC có

OA=OC => tg AOC cân tại O

\(BO\perp AC\) => BO là đường cao của tg AOC

=> BO là đường trung trực của tg AOC (trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung trực của cạnh đáy )

\(\Rightarrow HA=HC\) (2)

Từ (1) và (2) => ABCO là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Xét tg ABO và tg CBO có

ABCO là hbh (cmt) => AO=BC; AB=CO (trong hbh các cặp cạh đối // và bằng nhau)

BO chung

=> tg ABO=tg ACO (c.c.c) \(\Rightarrow\widehat{BCO}=\widehat{BAO}=90^o\) => BC là tiếp tuyến của (O)

b/

Xét tg vuông ABO có

\(BO=\sqrt{AB^2+AO^2}=\sqrt{R^2+R^2}=R\sqrt{2}\)

\(BH=OH=\frac{BO}{2}=\frac{R\sqrt{2}}{2}\)

Tg cân ABO có \(\widehat{BAO}=90^o\Rightarrow\widehat{ABO}=\widehat{AOB}=45^o\)

Xét tg AOI có OA=OI => tg AOI cân tại O \(\Rightarrow\widehat{AIO}=\widehat{IAO}=\frac{180^o-\widehat{AOB}}{2}=\frac{180^o-45^o}{2}=67,5^o\)

\(AH^2=BH.OH=BH^2=\frac{2R^2}{4}\Rightarrow AH=\frac{R\sqrt{2}}{2}\) (Trong tg vuông bình phương đường cao bằng tích giữa hình chiếu 2 cạnh góc vuông trên cạnh huyền)

Xét tg vuông AIH có

\(\tan\widehat{AIO}=\tan67,5^o=\frac{AH}{IH}\Rightarrow IH=\frac{AH}{\tan67,5^o}=\frac{R\sqrt{2}}{2.\tan67,5^o}\)

\(\sin\widehat{AIO}=\sin67,5^o=\frac{AH}{AI}\Rightarrow AI=\frac{AH}{\sin67,5^o}=\frac{R\sqrt{2}}{2.\sin67,5^o}\)

a: Ta có: ΔOAC cân tại O

mà OB là đường cao

nên OB là phân giác của góc AOC

Xét ΔOAB và ΔOCB có

OA=OC

\(\widehat{AOB}=\widehat{COB}\)

OB chung

Do đó: ΔOAB=ΔOCB

=>\(\widehat{OAB}=\widehat{OCB}=90^0\)

=>BC là tiếp tuyến của (O)

b: Ta có: ΔABO vuông tại A

=>\(BO^2=BA^2+AO^2\)

=>\(BO^2=R^2+R^2=2R^2\)

=>\(BO=R\sqrt{2}\)

Xét ΔBOA vuông tại A có AH là đường cao

nên \(BH\cdot BO=BA^2\)

=>\(BH\cdot R\sqrt{2}=R^2\)

=>\(BH=\dfrac{R^2}{R\sqrt{2}}=\dfrac{R}{\sqrt{2}}\)

Xét ΔABO vuông tại A có AO=AB

nên ΔABO vuông cân tại A

=>\(\widehat{ABO}=\widehat{AOB}=45^0\)

Xét ΔAOI có \(cosAOI=\dfrac{OA^2+OI^2-AI^2}{2\cdot OA\cdot OI}\)

=>\(\dfrac{R^2+R^2-AI^2}{2\cdot R\cdot R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(2R^2-AI^2=2R^2\cdot\dfrac{\sqrt{2}}{2}=R^2\cdot\sqrt{2}\)

=>\(AI^2=2R^2-R^2\cdot\sqrt{2}\)

=>\(AI^2=R^2\left(2-\sqrt{2}\right)\)

=>\(AI=R\cdot\sqrt{2-\sqrt{2}}\)

Xét ΔOHA vuông tại H có \(cosHOA=\dfrac{HO}{OA}\)

=>\(\dfrac{HO}{R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(HO=R\cdot\dfrac{\sqrt{2}}{2}\)

OH+HI=OI

=>\(HI+\dfrac{R\sqrt{2}}{2}=R\)

=>\(HI=R-\dfrac{R\sqrt{2}}{2}=R\left(1-\dfrac{\sqrt{2}}{2}\right)=\dfrac{2-\sqrt{2}}{2}\cdot R\)

+ Ta có: AB là tiếp tuyến của (O)(gt)

nên AB\(\perp\)OB  

=> \(\Delta\)OBA vuông tại B(đpcm)

+ Xét \(\Delta\)OAK Có A1=A2  ( 1 ) (t/c 2 tiếp tuyến cắt nhau)

OK // AB => A1 = O1 ( 2 ) (so le trong)

Từ (1, 2) => (đpcm)

b, Xét \(\Delta\)AKO cân tại K (cmt)

IA = IO (=R)

=> KI là đường trung tuyến \(\Delta\)AKO

=> KI cũng là đường cao

=> KI\(\perp\)AO  hay KM \(\perp\)IO  

Vậy KM là tiếp tuyến của (O) (đpcm)

c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )

Xét \(\Delta\)ABO vuông tại B (cmt) 

AD định lí Py ta go ta cs : 

AO2 =AB2  + OB2

AB2 = AO2 - OB2

AB2 = 4R2 - R2

AB = \(R\sqrt{3}\)

dễ rùi tự lm tiếp 

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4