Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có: AB là tiếp tuyến của (O)(gt)
nên AB\(\perp\)OB
=> \(\Delta\)OBA vuông tại B(đpcm)
+ Xét \(\Delta\)OAK Có A1=A2 ( 1 ) (t/c 2 tiếp tuyến cắt nhau)
OK // AB => A1 = O1 ( 2 ) (so le trong)
Từ (1, 2) => (đpcm)
b, Xét \(\Delta\)AKO cân tại K (cmt)
IA = IO (=R)
=> KI là đường trung tuyến \(\Delta\)AKO
=> KI cũng là đường cao
=> KI\(\perp\)AO hay KM \(\perp\)IO
Vậy KM là tiếp tuyến của (O) (đpcm)
c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )
Xét \(\Delta\)ABO vuông tại B (cmt)
AD định lí Py ta go ta cs :
AO2 =AB2 + OB2
AB2 = AO2 - OB2
AB2 = 4R2 - R2
AB = \(R\sqrt{3}\)
dễ rùi tự lm tiếp
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có:
\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)
b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì \(\widehat{BOA}=\widehat{COA}\)
Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)
Vậy nên AC là tiếp tuyến của đường tròn (O).
c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)
Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:
\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)
Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.
Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.
a: Ta có: ΔOAC cân tại O
mà OB là đường cao
nên OB là phân giác của góc AOC
Xét ΔOAB và ΔOCB có
OA=OC
\(\widehat{AOB}=\widehat{COB}\)
OB chung
Do đó: ΔOAB=ΔOCB
=>\(\widehat{OAB}=\widehat{OCB}=90^0\)
=>BC là tiếp tuyến của (O)
b: Ta có: ΔABO vuông tại A
=>\(BO^2=BA^2+AO^2\)
=>\(BO^2=R^2+R^2=2R^2\)
=>\(BO=R\sqrt{2}\)
Xét ΔBOA vuông tại A có AH là đường cao
nên \(BH\cdot BO=BA^2\)
=>\(BH\cdot R\sqrt{2}=R^2\)
=>\(BH=\dfrac{R^2}{R\sqrt{2}}=\dfrac{R}{\sqrt{2}}\)
Xét ΔABO vuông tại A có AO=AB
nên ΔABO vuông cân tại A
=>\(\widehat{ABO}=\widehat{AOB}=45^0\)
Xét ΔAOI có \(cosAOI=\dfrac{OA^2+OI^2-AI^2}{2\cdot OA\cdot OI}\)
=>\(\dfrac{R^2+R^2-AI^2}{2\cdot R\cdot R}=cos45=\dfrac{\sqrt{2}}{2}\)
=>\(2R^2-AI^2=2R^2\cdot\dfrac{\sqrt{2}}{2}=R^2\cdot\sqrt{2}\)
=>\(AI^2=2R^2-R^2\cdot\sqrt{2}\)
=>\(AI^2=R^2\left(2-\sqrt{2}\right)\)
=>\(AI=R\cdot\sqrt{2-\sqrt{2}}\)
Xét ΔOHA vuông tại H có \(cosHOA=\dfrac{HO}{OA}\)
=>\(\dfrac{HO}{R}=cos45=\dfrac{\sqrt{2}}{2}\)
=>\(HO=R\cdot\dfrac{\sqrt{2}}{2}\)
OH+HI=OI
=>\(HI+\dfrac{R\sqrt{2}}{2}=R\)
=>\(HI=R-\dfrac{R\sqrt{2}}{2}=R\left(1-\dfrac{\sqrt{2}}{2}\right)=\dfrac{2-\sqrt{2}}{2}\cdot R\)