K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 9

Lơ giải:
Gọi tọa độ điểm $C$ là $(a;b)$.

Vì $ABC$ là tam giác cân tại $B$ nên: 

$AB=BC\Rightarrow AB^2=BC^2$

$\Rightarrow (3-3)^2+(4-0)^2=(a-3)^2+(b-4)^2$

$\Rightarrow (a-3)^2+(b-4)^2=16$ (1)

Lại có: $ABC$ vuông cân tại $B$ nên theo định lý Pitago:

$AB^2+BC^2=AC^2$
$\Rightarrow 2AB^2=AC^2$

$\Rightarrow AC^2= 2.16=32$

$\Rightarrow (a-3)^2+b^2=32$ (2)

Từ $(1); (2)\Rightarrow b^2-(b-4)^2=32-16$

$\Rightarrow 4(2b-4)=16$

$\Rightarrow b=4$

$(a-3)^2=32-b^2=32-4^2=16$

$\Rightarrow a-3=4$ hoặc $a-3=-4$

$\Rightarrow a=7$ hoặc $a=-1$. Mà $a<0$ nên $a=-1$

Vậy tọa độ điểm $C$ là $(-1, 4)$

 

 

Tọa độ điểm M là:

\(\left\{{}\begin{matrix}x_M=\dfrac{1+1}{2}=1\\y_M=\dfrac{0+4}{2}=2\end{matrix}\right.\)

Tọa độ điểm N là:

\(\left\{{}\begin{matrix}x_N=\dfrac{1+5}{2}=3\\y_N=\dfrac{4+4}{2}=4\end{matrix}\right.\)

Tọa độ điểm P là:

\(\left\{{}\begin{matrix}x_P=\dfrac{5+7}{2}=6\\y_P=\dfrac{4+0}{2}=2\end{matrix}\right.\)

Tọa độ điểm Q là:

\(\left\{{}\begin{matrix}x_Q=\dfrac{7+1}{2}=4\\y_Q=\dfrac{0+0}{2}=0\end{matrix}\right.\)

9 tháng 3 2016

tọa đọ của điểm B sẽ ngược lại tọa độ của A

=>tọa độ của B(-3;5)

4 tháng 3 2017

Violympic toán 7

Theo hình vẽ, ta có:

\(\Delta CAO\) vuông tại C;

\(\Delta BAO\) vuông tại B;

\(OC=BA=9\) (đvđd)

\(OB=CA=12\) (đvđd)

Trong tam giác vuông BAO có:

\(OA^2=OB^2+BA^2\\ \Rightarrow OA^2=12^2+9^2\\ OA^2=144+81\\ OA^2=225\\ \Rightarrow OA=\sqrt{225}\\ OA=15\)

Vậy: OA=15 (đvđd)

15 nha bn

12 tháng 1 2019

Ta có hình vẽ tam giác ABC

Giải sách bài tập Toán 7 | Giải sbt Toán 7

A(-3;4); B(-3;1); C(1;-1)

13 tháng 12 2021

Chọn B