Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)
A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên
\(\Rightarrow n-2=Ư\left(7\right)\)
\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n=\left\{-5;1;3;9\right\}\)
a)A=\(\frac{2n+1+3n+5-4n+5}{n-3}\)
A=\(\frac{5n+6-4n+5}{n-3}\)
A=\(\frac{n+1}{n-3}\)
A=\(\frac{n-3+4}{n-3}\)
A=\(\frac{n-3}{n-3}\)+ \(\frac{4}{n-3}\)
A=1+\(\frac{4}{n-3}\)
Để A nguyên thì 4⋮n-3 hay n-3Ư(4).Ta có bảng sau:
n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 4 | 5 | 7 | 2 | 1 | -1 |
Vậy n{ 4;5;7;2;1;-1)
Để P có giá trị nguyên
=> 2n - 5 \(⋮\)3n - 2
=> 6n - 15 \(⋮\)3n - 2
=> 2( 3n - 2 ) - 11 \(⋮\)3n - 2
=> 11 \(⋮\)3n - 2
=> 3n - 2 \(\in\)Ư(11)
=> 3n - 2 \(\in\){ 1 ; -1 ; 11 ; -11 }
=> 3n \(\in\){ 3 ; 1 ; 13 ; -9 }
=> n \(\in\){ 1 ; 1/3 ; 13/3 ; -3 }
Mà n là số nguyên
Vậy n \(\in\){ 1 ; -3 }
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
\(\dfrac{3n-2}{2n+1}\) là một số nguyên nên:
\(2\cdot\dfrac{3n-2}{2n+1}=\dfrac{6n-4}{2n+1}\) cũng là số nguyên
Ta có: \(\dfrac{6n-4}{2n+1}=\dfrac{6n+3-7}{2n+1}=\dfrac{3\left(2n+1\right)-7}{2n+1}=3-\dfrac{7}{2n+1}\)
Để phân số có giá trị nguyên thì `2n+1∈Ư(7)`
`=>2n+1∈{1;-1;7;-7}`
`=>2n∈{0;-2;6;-8}`
`=>n∈{0;-1;3;-4}`
Vậy: ...
Giúp mình với